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Abstract

Programming language processing (similar to natural lan-
guage processing) is a hot research topic in the field of soft-
ware engineering; it has also aroused growing interest in the
artificial intelligence community. However, different from a
natural language sentence, a program contains rich, explicit,
and complicated structural information. Hence, traditional
NLP models may be inappropriate for programs. In this pa-
per, we propose a novel tree-based convolutional neural net-
work (TBCNN) for programming language processing, in
which a convolution kernel is designed over programs’ ab-
stract syntax trees to capture structural information. TBCNN
is a generic architecture for programming language process-
ing; our experiments show its effectiveness in two differ-
ent program analysis tasks: classifying programs according
to functionality, and detecting code snippets of certain pat-
terns. TBCNN outperforms baseline methods, including sev-
eral neural models for NLP.

Introduction

Researchers from various communities are showing growing
interest in applying artificial intelligence (AI) techniques to
solve software engineering (SE) problems (Dietz et al. 2009;
Bettenburg and Begel 2013; Hao et al. 2013). In the area of
SE, analyzing program source code—called programming
language processing in this paper—is of particular impor-
tance.

Even though computers can run programs, they do not
truly “understand” programs. Analyzing source code pro-
vides a way of estimating programs’ behavior, functionality,
complexity, etc. For instance, automatically detecting source
code snippets of certain patterns help programmers to dis-
cover buggy or inefficient algorithms so as to improve code
quality. Another example is managing large software repos-
itories, where automatic source code classification and tag-
ging are crucial to software reuse. Programming language
processing, in fact, serves as a foundation for many SE tasks,
e.g., requirement analysis (Ghabi and Egyed 2012), software
development and maintenance (Bettenburg and Begel 2013).

Hindle et al. (2012) demonstrate that programming lan-
guages, similar to natural languages, also contain abundant
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statistical properties, which are important for program anal-
ysis. These properties are difficult to capture by humans,
but justify learning-based approaches for programming lan-
guage processing. However, existing machine learning pro-
gram analysis depends largely on feature engineering, which
is labor-intensive and ad hoc to a specific task, e.g., code
clone detection (Chilowicz, Duris, and Roussel 2009), and
bug detection (Steidl and Gode 2013). Further, evidence
in the machine learning literature suggests that human-
engineered features may fail to capture the nature of data,
so they may be even worse than automatically learned ones.

The deep neural network, also known as deep learning, is
a highly automated learning machine. By exploring multi-
ple layers of non-linear transformation, the deep architec-
ture can automatically learn complicated underlying fea-
tures, which are crucial to the task of interest. Over the
past few years, deep learning has made significant break-
throughs in various fields, such as speech recognition (Dahl,
Mohamed, and Hinton 2010), computer vision (Krizhevsky,
Sutskever, and Hinton 2012), and natural language process-
ing (Collobert and Weston 2008).

Despite some similarities between natural languages and
programming languages, there are also obvious differences
(Pane, Ratanamahatana, and Myers 2001). Based on a for-
mal language, programs contain rich and explicit structural
information. Even though structures also exist in natural
languages, they are not as stringent as in programs. Pinker
(1994) illustrates an interesting example, “The dog the stick
the fire burned beat bit the cat.” This sentence complies
with all grammar rules, but too many attributive clauses
are nested. Hence, it can hardly be understood by people
due to the limitation of human intuition capacity. On the
contrary, three nested loops are common in programs. The
parse tree of a program, in fact, is typically much larger
than that of a natural language sentence—there are approx-
imately 190 nodes on average in our experiment, whereas
a sentence comprises only 20 words in a sentiment analy-
sis dataset (Socher et al. 2013). Further, the grammar rules
“alias” neighboring relationships among program compo-
nents. The statements inside and outside a loop, for exam-
ple, do not form one semantic group, and thus are not se-
mantically neighboring. On the above basis, we think more
effective neural models are in need to capture structural in-
formation in programs.
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In this paper, we propose a novel Tree-Based Convolu-
tional Neural Network (TBCNN) based on programs’ ab-
stract syntax trees (ASTs). We also introduce the notion
of “continuous binary trees” and apply dynamic pooling to
cope with ASTs of different sizes and shapes. The TBCNN
model is a generic architecture, and is applied to two SE
tasks in our experiments—classifying programs by function-
alities and detecting code snippets of certain patterns. It out-
performs baseline methods in both tasks, including the re-
cursive neural network (Socher et al. 2011b) proposed for
NLP. To the best of our knowledge, this paper is also the first
to apply deep neural networks to the field of programming
language processing.1

Related Work

Deep neural networks have made significant breakthroughs
in many fields. Stacked restricted Boltzmann machines and
autoencoders are successful pretraining methods (Hinton,
Osindero, and Teh 2006; Bengio et al. 2006). They explore
the underlying features of data in an unsupervised manner,
and give a more meaningful initialization of weights for later
supervised learning with deep neural networks. These ap-
proaches work well with generic data (e.g. data located in a
manifold embedded in a certain dimensional space), but they
may not be suitable for programming language processing,
because programs contain rich structural information. Fur-
ther, AST structures also vary largely among different data
samples (programs), and hence they cannot be fed directly
to a fixed-size network.

To capture explicit structures in data, it may be impor-
tant and beneficial to integrate human priors to the net-
works (Bengio, Courville, and Vincent 2013). One exam-
ple is convolutional neural networks (CNNs, LeCun et al.
1995; Krizhevsky, Sutskever, and Hinton 2012), which spec-
ify spatial neighboring information in data. CNNs work with
signals of a certain dimension (e.g., images); they also fail
to capture tree-structural information as in programs.

Socher et al. (2013, 2011b) propose a recursive neural net-
work (RNN) for NLP. Although structural information may
be coded to some extent in RNNs, the major drawback is
that only the root features are used for supervised learn-
ing, which buries illuminating information under a compli-
cated neural architecture. RNNs also suffer from the diffi-
culty of training due to the long dependency path during
back-propagation (Bengio, Simard, and Frasconi 1994).

Subsequent work. After the preliminary version of this
paper was preprinted on arXiv,2 Zaremba and Sutskever
(2014) use recurrent neural networks to estimate the output
of restricted python programs. Piech et al. (2015) build re-
cursive networks on Hoare triples. Regarding the proposed
TBCNN, we extend it to process syntactic parse trees of nat-
ural languages (Mou et al. 2015); Duvenaud et al. (2015) ap-
ply a similar convolutional network over graphs to analyze
molecules.

1We make our source code and the collected dataset available
through our website (https://sites.google.com/site/treebasedcnn/).

2On 18 September 2014 (http://arxiv.org/abs/1409.5718v1).

Tree-Based Convolutional Neural Network

Programming languages have a natural tree representation—
the abstract syntax tree (AST). Figure 1a shows the AST of
the code snippet “int a=b+3;”.3 Each node in the AST
is an abstract component in program source code. A node p
with children c1, · · · , cn represents the constructing process
of the component p → c1 · · · cn.

Figure 1b shows the overall architecture of TBCNN. In
our model, an AST node is first represented as a distributed,
real-valued vector so that the (anonymous) features of the
symbols are captured. The vector representations are learned
by a coding criterion in our previous work (Peng et al. 2015).

Then we design a set of subtree feature detectors, called
the tree-based convolution kernel, sliding over the entire
AST to extract structural information of a program. We
thereafter apply dynamic pooling to gather information over
different parts of the tree. Finally, a hidden layer and an out-
put layer are added. For supervised classification tasks, the
activation function of the output layer is softmax.

In the rest of this section, we first explain the coding cri-
terion for AST nodes’ representation learning, serving as a
pretraining phase of programming language processing. We
then describe the proposed TBCNN model, including a cod-
ing layer, a convolutional layer, and a pooling layer. We also
provide additional information on dealing with nodes that
have varying numbers of child nodes, as in ASTs, by intro-
ducing the notion of continuous binary trees.

Representation Learning for AST Nodes

Vector representations, sometimes known as embeddings,
can capture underlying meanings of discrete symbols, like
AST nodes. We propose in our previous work (Peng et al.
2015) an unsupervised approach to learn program vector
representations by a coding criterion, which serves as a way
of pretraining.

A generic criterion for representation learning is
“smoothness”—similar symbols have similar feature vec-
tors (Bengio, Courville, and Vincent 2013). For example,
the symbols While and For are similar because both of
them are related to control flow, particularly loops. But they
are different from ID, since ID probably represents some
data. In our scenario, we would like the child nodes’ repre-
sentations to “code” their parent node’s via a single neural
layer, during which both vector representations and coding
weights are learned. Formally, let vec(·) ∈ R

Nf be the fea-
ture representation of a symbol, where Nf is the feature di-
mension. For each non-leaf node p and its direct children
c1, · · · , cn, we would like

vec(p) ≈ tanh
(∑

i
liWcode,i · vec(ci) + bcode

)
(1)

where Wcode,i ∈ R
Nf×Nf is the weight matrix corre-

sponding to the node ci; bcode ∈ R
Nf is the bias. li =

#leaves under ci
#leaves under p is the coefficient of the weight. (Weights
Wcode,i are weighted by leaf numbers.)

Because different nodes may have different numbers of
children, the number of Wcode,i’s is not fixed. To overcome

3Parsed by pycparser (https://pypi.python.org/pypi/pycparser/).
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Figure 1: (a) Illustration of an AST, corresponding to the C code snippet “int a=b+3;” It should be notice that our model takes as
input the entire AST of a program, which is typically much larger. (b) The architecture of the Tree-Based Convolutional Neural
Network (TBCNN). The main components in our model include vector representation and coding, tree-based convolution and
dynamic pooling; then a fully-connected hidden layer and an output layer (softmax) are added.

this problem, we introduce the “continuous binary tree,”
where only two weight matrices W l

code and W r
code serve as

model parameters. Wi is a linear combination of the two pa-
rameter matrices according to the position of node i. Details
are deferred to the last part of this section.

The closeness between vec(p) and its coded vector is
measured by Euclidean distance square, i.e.,

d =
∥∥∥vec(p)− tanh

(∑
i
liWcode,i · vec(ci) + bcode

)∥∥∥
2

2

To prevent the pretraining algorithm from learning trivial
representations (e.g., 0’s will give 0 distance but are mean-
ingless), negative sampling is applied like Collobert et al.
(2011). For each pretraining data sample p, c1, · · · , cn, we
substitute one symbol (either p or one of c’s) with a random
symbol. The distance of the negative sample is denoted as
dc, which should be at least larger than that of the positive
training sample plus a margin Δ (set to 1 in our experiment).
Thus, the pretraining objective is to

minimize
W l

code,W
r
code,bcode,vec(·)

max {0,Δ+ d− dc}

Coding Layer

Having pretrained the feature vectors for all symbols, we
would like to feed them forward to the tree-based convo-
lutional layer for supervised learning. For leaf nodes, they
are just the vector representations learned in the pretraining
phase. For a non-leaf node p, it has two representations: the
one learned in the pretraining phase (left-hand side of Equa-
tion 1), and the coded one (right-hand side of Equation 1).
They are linearly combined before being fed to the convolu-
tional layer. Let c1, · · · , cn be the children of node p and we
denote the combined vector as p. We have

p = Wcomb1 · vec(p)
+Wcomb2 · tanh

(∑
i
liWcode,i · vec(xi) + bcode

)

where Wcomb1,Wcomb2 ∈ R
Nf×Nf are the parameters for

combination. They are initialized as diagonal matrices and
then fine-tuned during supervised training.

Tree-based Convolutional Layer

Now that each symbol in ASTs is represented as a dis-
tributed, real-valued vector x ∈ R

Nf , we apply a set of

T O P L O W E R _ L E F T L O W E R _ R I G H T

( a ) ( b ) ( c ) F i g u r e 2 : ( a ) T r e e - b a s e d c o n v o l u t i o n . N o d e s o n t h e l e f t a r e
t h e f e a t u r e v e c t o r s o f A S T n o d e s . T h e y a r e e i t h e r p r e t r a i n e d
o r c o m b i n e d w i t h p r e t r a i n e d a n d c o d e d v e c t o r s . ( b ) A n i l l u s -
t r a t i o n o f 3 - w a y p o o l i n g . ( c ) A n a n a l o g y t o t h e c o n t i n u o u s
b i n a r y t r e e m o d e l . I n t h e t r i a n g l e , t h e c o l o r o f a p i x e l i s a
c o m b i n a t i o n o f t h r e e p r i m a r y c o l o r s ; i n t h e c o n v o l u t i o n p r o -
c e s s , t h e w e i g h t f o r a n o d e i s a c o m b i n a t i o n o f t h r e e w e i g h t
p a r a m e t e r s , n a m e l y W t c o n v , W l c o n v , a n d W r c o n v . fi x e d - d e p t h f e a t u r e d e t e c t o r s s l i d i n g o v e r t h e e n t i r e t r e e , d e -
p i c t e d i n F i g u r e 2 a . T h e s u b t r e e f e a t u r e d e t e c t o r s c a n b e
v i e w e d a s c o n v o l u t i o n w i t h a s e t o f fi n i t e s u p p o r t k e r n e l s .
W e c a l l t h i s t r e e - b a s e d c o n v o l u t i o nF o r m a l l y , i n a fi x e d - d e p t h w i n d o w , i f t h e r e a r e n n o d e s w i t h v e c t o r r e p r e s e n t a t i o n s x 1 , · · · , x n , t h e n t h e o u t p u t o f t h e f e a t u r e d e t e c t o r s i s 4 y = t a n h � � n

i W c o n v , i · x i + b c o n v � w h e r e y , b c o n v � R N c , W c o n v , i � R N c × N f . ( N c i s t h e n u m b e r o f f e a t u r e d e t e c t o r s . ) 0 t h a t d o n o t h a v e a s m a n y l a y e r s a s t h e f e a t u r e d e t e c t o r s . I n o u r e x p e r i m e n t s , t h e k e r n e l d e p t h i s s e t t o 2 . N o t e t h a t , t o d e a l w i t h v a r y i n g n u m b e r s o f c h i l d r e n , w e a l s o a d o p t t h e n o t i o n o f c o n t i n u o u s b i n a r y t r e e . I n t h i s s c e - n a r i o , t h r e e w e i g h t m a t r i c e s s e r v e a s m o d e l p a r a m e t e r s , n a m e l y W t c o n v , W l c o n v , a n d W r c o n v . W c o n v , i i s a l i n e a r c o m b i -
n a t i o n o f t h e s e t h r e e m a t r i c e s ( e x p l a i n e d i n d e t a i l i n t h e l a s t

p a r t o f t h i s s e c t i o n ) .

4 W e u s e d t a n h a s t h e a c t i v a t i o n f u n c t i o n i n T B C N N m a i n l y
b e c a u s e w e h o p e t o e n c o d e f e a t u r e s t o a s a m e s e m a n t i c s p a c e ( � , 1 ) d u r i n g c o d i n g . W e a r e g r a t e f u l t o a n a n o n y m o u s r e v i e w e r

f o r r e m i n d i n g u s o f u s i n g R e L U i n c o n v o l u t i o n , a n d w e a r e h a p p y
t o t r y i t i n f u t u r e w o r k . 1289



Dynamic Pooling

After convolution, structural features in an AST are ex-
tracted, and a new tree is generated. The new tree has ex-
actly the same shape and size as the original one, which is
varying among different programs. Therefore, the extracted
features cannot be fed directly to a fixed-size neural layer.
Dynamic pooling (Socher et al. 2011a) is applied to deal
with this problem.

The simplest approach, perhaps, is to pool all features to
one vector. We call this one-way pooling. Concretely, the
maximum value in each dimension is taken from the features
that are detected by tree-based convolution. We also propose
an alternative, three-way pooling, where features are pooled
to 3 parts, TOP, LOWER LEFT, and LOWER RIGHT, ac-
cording to the their positions in the AST (Figure 2b). As we
shall see from the experimental results, the simple one-way
pooling just works as well as three-way pooling. Therefore
we adopt one-way pooling in our experiments.

After pooling, the features are fully connected to a hid-
den layer and then fed to the output layer (softmax) for su-
pervised classification. With the dynamic pooling process,
structural features along the entire AST reach the output
layer with short paths. Hence, they can be trained effectively
by back-propagation.

The “Continuous Binary Tree” Model

As stated, one problem of coding and convolving is that we
cannot determine the number of weight matrices because
AST nodes have different numbers of children.

One possible solution is the continuous bag-of-words
model (CBoW, Mikolov et al., 2013),5 but position informa-
tion will be lost completely. Such approach is also used in
Hermann and Blunsom (2014). Socher et al. (2014) allocate
a different weight matrix as parameters for each position;
but this method fails to scale up since there will be a huge
number of different positions in ASTs.

In our model, we view any subtree as a “binary” tree, re-
gardless of its size and shape. That is, we have only three
weight matrices as parameters for convolution, and two for
coding. We call it a continuous binary tree.

Take convolution as an example. The three parameter ma-
trices are W t

conv, W l
conv, and W r

conv. (Superscripts t, l, r refer
to “top,” “left,” and “right.”) For node xi in a window, its
weight matrix for convolution Wconv,i is a linear combina-
tion of W t

conv, W l
conv, and W r

conv, with coefficients ηti , η
l
i, and

ηri , respectively. The coefficients are computed according to
the relative position of a node in the sliding window. Fig-
ure 2c is an analogy to the continuous binary tree model.
The equations for computing η’s are listed as follows.
• ηti =

di−1
d−1 (di: the depth of the node i in the sliding win-

dow; d: the depth of the window.)
• ηri = (1 − ηti)

pi−1
n−1 . (pi: the position of the node; n: the

total number of p’s siblings.)
• ηli = (1− ηti)(1− ηri )

5In their original paper, they do not deal with varying-length
data, but their method extends naturally to this scenario. Their
method is also mathematically equivalent to average pooling.

Likewise, the continuous binary tree for coding has two
weight matrices W l

code and W r
code as parameters. The details

are not repeated here.

To sum up, the entire parameter set for TBCNN is Θ =
{W l

code,W
r
code,Wcomb1,Wcomb2,W

t
conv,W

l
conv,W

r
conv,Whid,

Wout, bcode, bconv, bhid, bout, vec(·)}, where Whid, Wout, bhid,
and bout are the weights and biases for the hidden and
output layers. To set up supervised training, W l

code, W r
code,

bcode, and vec(·) are derived from the pretraining phase;
Wcomb1 and Wcomb2 are initialized as diagonal matrices;
other parameters are initialized randomly. We apply the
cross-entropy loss and use stochastic gradient descent,
computed by back-propagation.

Experiments

We first assess the learned vector representations both quali-
tatively and quantitatively. Then we evaluate TBCNN in two
supervised learning tasks, and conduct model analysis.

The dataset of our experiments comes from a pedagogi-
cal programming open judge (OJ) system.6 There are a large
number of programming problems on the OJ system. Stu-
dents submit their source code as the solution to a certain
problem; the OJ system automatically judges the validity of
submitted source code by running the program. We down-
loaded the source code and the corresponding programming
problems (represented as IDs) as our dataset.

Unsupervised Program Vector Representations

We applied the coding criterion of pretraining to all C code
in the OJ system, and obtained AST nodes’ vector represen-
tations.

Qualitative analysis. Figure 3a illustrates the hierarchical
clustering result based on a subset of AST nodes. As demon-
strated, the symbols mainly fall into three categories: (1)
BinaryOp, ArrayRef, ID, Constant are grouped to-
gether since they are related to data reference/manipulation;
(2) For, If, While are similar since they are related to
control flow; (3) ArrayDecl, FuncDecl, PtrDecl are
similar since they are declarations. The result is quite sen-
sible because it is consistent with human understanding of
programs.

Quantitative analysis. We also evaluated pretraining’s
effect on supervised learning by feeding the learned repre-
sentations to a program classification task. (See next subsec-
tion.) Figure 3b plots the learning curves of both training and
validation, which are compared with random initialization.
Unsupervised vector representation learning accelerates the
supervised training process by nearly 1/3, showing that pre-
training does capture underlying features of AST nodes, and
that they can emerge high-level features spontaneously dur-
ing supervised learning. However, pretraining has a limited
effect on the final accuracy. One plausible explanation is that
the number of AST nodes is small: the pycparser, we
use, distinguishes only 44 symbols. Hence, their representa-
tions can be adequately tuned in a supervised fashion.

6http://programming.grids.cn
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(a) (b)

Figure 3: Analysis of vector representations. (a) Hierarchical
clustering based on AST nodes’ vector representations. (b)
Learning curves with and without pretraining.

Statistics Mean Sample std.

# of code lines 36.3 19.0
# of AST nodes 189.6 106.0
Average leaf nodes’ depth in an AST 7.6 1.7
Max depth of an AST 12.3 3.2

Table 1: Statistics of our dataset.

Hyperparameter Value How is the value chosen?

Initial learning rate 0.3 By validation
Learning rate decay None Empirically
Embedding dimension 30 Empirically
Convolutional layers’ dim. 600 By validation
Penultimate layer’s dim. 600 Same as conv layers
l2 penalty None Empirically

Table 2: TBCNN’s hyperparameters.

Nonetheless, we think the pretraining criterion is effec-
tive and beneficial for TBCNN, because training deep neural
networks is usually time-consuming, especially when tuning
hyperparameters. The pretrained vector representations are
used throughout the experiments below.

Classifying Programs by Functionalities

Task description In software engineering, classifying
programs by functionalities is an important problem for var-
ious software development tasks. For example, in a large
software repository (e.g., SourceForge), software products
are usually organized into categories, a typical criterion for
which is by functionalities. With program classification, it
becomes feasible to automatically tag a software component
newly added into the repository, which is beneficial for soft-
ware reuse during the development process.

In our experiment, we applied TBCNN to classify source
code in the OJ system. The target label of a data sample is
one of 104 programming problems (represented as an ID).
That is, programs with a same target label have the same
functionality. We randomly chose exactly 500 programs in
each class, and thus 52,000 samples in total, which were
further randomly split by 3:1:1 for training, validation, and
testing. Relevant statistics are shown in Table 1.

Hyperparameters TBCNN’s hyperparameters are shown
in Table 2. Our competing methods include SVM and a deep
feed-forward neural network based on hand-crafted features,
namely bag-of-words (BoW, the counting of each symbol)
or bag-of-tree (BoT, the counting of 2-layer subtrees). We
also compare our model with the recursive neural network

Group Method Test Accuracy (%)

linear SVM+BoW 52.0
Surface RBF SVM+BoW 83.9
features linear SVM+BoT 72.5

RBF SVM+BoT 88.2
DNN+BoW 76.0

NN-based DNN+BoT 89.7
approaches Vector avg. 53.2

RNN 84.8
Our method TBCNN 94.0

Table 3: The accuracy of 104-label program classifications.

(RNN, Socher et al. 2011b). Hyperparameters for baselines
are listed as follows.

SVM. The linear SVM has one hyperparameter C; RBF
SVM has two, C and γ. They are tuned by validation over
the set {· · · , 1, 0.3, 0.1, 0.03, · · · } with grid search.

DNN. We applied a 4-layer DNN (including input) em-
pirically. The hidden layers’ dimension is 300, chosen from
{100, 300, 1000}; learning rates are 0.003 for BoW and 0.03
for BoT, chosen from {0.003, · · · , 0.3} with granularity 3x.
�2 regularization coefficient is 10−6 for both BoW and BoT,
chosen from {10−7, · · · , 10−4} with granularity 10x, and
also no regularization.

RNN. Recursive units are 600-dimensional, as in
our method. The learning rate is chosen from the set
{· · · 1.0, 0.3, 0.1 · · · }, and 0.3 yields the highest validation
performance.

Results Table 3 presents the results in the 104-label
program classification experiment. Using SVM with sur-
face features does distinguish different programs to some
extent—for example, a program about string manipulation
is different from, say, matrix operation; also, a difficult pro-
gramming problem necessitates a more complex program,
and thus more lines of code and AST nodes. However, their
performance is comparatively low.

We tried deep feed-forward neural networks on these fea-
tures, and achieved accuracies of 76.0–89.7%, comparable
to SVMs. Vector averaging with softmax—another neural
network-based competing method applied in NLP (Socher et
al. 2013; Kalchbrenner, Grefenstette, and Blunsom 2014)—
yields an accuracy similar to a linear classifier built on
BoW features. This is probably because the number of AST
symbols is far fewer than words in natural languages, and
thus the vector representations (provided non-singular) can
be absorbed into the classifier’s weights. Comparing these
approaches with our method, we deem TBCNN’s perfor-
mance boost is not merely caused by using a better clas-
sifier (neural networks versus SVM, say), but also the fea-
ture/representation learning nature, which enables automatic
structural feature extraction.

We also applied RNN to the program classification
task7; the RNN’s accuracy is lower than shallow methods

7We do not use the pretrained vector representations, which are
inimical to RNN: the weight Wcode codes children’s representation
to its candidate parent’s; adversely, the high-level nodes in pro-
grams (e.g., a function definition) are typically non-informative.
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Classifier Features Accuracy

Rand/majority – 50.0
RBF SVM Bag-of-words 62.3
RBF SVM Bag-of-trees 77.1
TBCNN Learned 89.1

Table 4: Accuracy of detecting bubble sort (in percentage).

Model Variant Validation Acc.

Coding layer → None 92.3
1-way pooling → 3-way 94.3
Continuous binary tree → CBoW 93.1
TBCNN with the best gadgets 94.4

Table 5: Effect of coding, pooling, and the continuous binary
tree.

(SVM+BoT). Taking into consideration experiments in NLP
(Socher et al. 2011b; 2013), we observe a degradation of
RNN’s performance if the tree structure is large.

TBCNN outperforms the above methods, yielding an ac-
curacy of 94%. By exploring tree-based convolution, our
model is better at capturing programs’ structural features,
which is important for program analysis.

Detecting Bubble Sort

Task description To further evaluate our TBCNN model
in a more realistic SE scenario, we used it to detect an un-
healthy code pattern, bubble sort, which can also be regarded
as a (binary) program classification task. Detecting source
code of certain patterns is closely related to many SE prob-
lems. In this experiment, bubble sort is thought of as un-
healthy code because it implements an inefficient algorithm.
By identifying such unhealthy code, project managers can
refine the implementations during the maintenance process.

Before the experiment, a volunteer8 annotated, from the
OJ system, 109 programs that contain bubble sort, and 109
programs that do not contain bubble sort. They were split
1:1 for validation and testing.

Data augmentation To train our TBCNN model, a dataset
of such scale is insufficient. We propose a simple yet useful
data augmentation technique for programs. Concretely, we
used the source code of 4k programs in the OJ system as the
non-bubble sort class. For each program, we randomly sub-
stituted a fragment of program statements with a pre-written
bubble sort snippet. Thus we had 8k data samples in total.

Results We tested our model on the annotated real-world
programs. Note that the test samples were written by real-
world programmers, and thus the styles and forms of bubble
sort snippets may differ from the training set, for example,
sorting an integer array versus sorting a user-defined struc-
ture, and sorting an array versus sorting two arrays simulta-
neously. As we see in Table 4, bag-of-words features are not
illuminating in this classification and yield a low accuracy of
62.3%. Bag-of-trees features are better, and achieve 77.06%.

8The volunteer has neither authorship nor a conflict of interests.

Figure 4: Validation accuracy versus the number of convo-
lution units.

Our model outperforms these methods by more than 10%.
This experiment also suggests that neural networks can learn
more robust features than just counting surface statistics.

Model Analysis

We now analyze each gadget of TBCNN quantitatively, with
the 104-label program classification as our testbed. We re-
port validation accuracies throughout this part.

Effect of coding layer In the proposed TBCNN model for
program analysis, we represent a non-leaf node by combin-
ing its coded representation and its pretrained one. We find
that, the underneath coding layer can also integrate global
information in addition to merely averaging two homoge-
neous sources. If we build a tree-based convolutional layer
directly on the pretrained vector representations, all struc-
tural features are “local,” that is, confined in the convolution
window. The lack of integrating global information leads to
2% degradation in performance. (See the first and last rows
in Table 5.)

Layers’ dimensions In our experiments, AST nodes’ vec-
tor representations are set to be 30-dimensional empirically.
We chose this small value because AST nodes have only 44
different symbols. Hence, the dimension needs to be, intu-
itively, smaller than words’ vector representations, e.g., 300
in Mou et al. (2015). The dimension of convolution, i.e.,
the number of feature detectors, was chosen by validation
(Figure 4). We tried several configurations, among which
600-dimensional convolution results in the highest valida-
tion accuracy. This analysis also verifies that programs have
rich structural information, even though the number of AST
symbols is not large. As the rich semantics are emerged by
different combinations of AST symbols, we are in need of
more feature detectors, that is, a larger convolutional layer.

Effect of pooling layer We tried two pooling methods in
our TBCNN model, and compare them in Table 5 (the sec-
ond and last rows). 3-way pooling is proposed in hope of
preserving features from different parts of the tree. However,
as indicated by the experimental result, the simple 1-way
pooling works just as fine (even 0.1% higher on the valida-
tion set). This suggests that TBCNN is not sensitive to pool-
ing methods, which mainly serve as a necessity for packing
varying sized and shaped data. Further development can be
addressed in future work.

Effect of continuous binary tree The continuous binary
tree is introduced to treat nodes with different numbers of
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children, as well as to capture order information of child
nodes. We also implemented the continuous bag-of-words
(CBoW) model, where child nodes’ representations are av-
eraged before convolution. Rows 4 and 5 in Table 5 compare
our proposed continuous binary tree and the above alterna-
tive. The result shows a boost of 1.3% in considering child
nodes’ order information.

Conclusion

In this paper, we applied deep neural networks to the field
of programming language processing. Due to the rich and
explicit tree structures of programs, we proposed the novel
Tree-Based Convolutional Neural Network (TBCNN). In
our model, program vector representations are learned by
the coding criterion; structural features are detected by the
convolutional layer; the continuous binary tree and dynamic
pooling enable our model to cope with trees of varying sizes
and shapes. Experimental results show the superiority of our
model to baseline methods.
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