
Experiences in Profile-Guided Operating System Kernel
Optimization

Pengfei Yuan, Yao Guo, and Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University
{yuanpf12, yaoguo, cherry}@sei.pku.edu.cn

ABSTRACT
The operating system kernel plays an important role in
the whole computer system. In this paper, we try to
improve application performance by optimizing the under-
lying operating system kernel. The technique we take
advantage of is profile-guided optimization, which is a
compiler optimization technique commonly used in user
applications. We implement the technique in the Linux
kernel and present some preliminary results evaluated on
six popular server applications: Apache, nginx, MySQL,
PostgreSQL, Redis and memcached. We also discuss some
opinions about kernel performance improvement and some
problems with applying this technique to the kernel.

Categories and Subject Descriptors
D.4 [Operating Systems]: Performance

General Terms
Experimentation, Performance

Keywords
Operating system kernel, Profile-guided optimization,
Server application

1. INTRODUCTION
Traditionally, the operating system kernel is opti-

mized to meet the performance requirements of different
types of applications. Tradeoffs are made everywhere
to guarantee that there is no performance bottleneck.
However, such a general-purpose kernel is often subop-
timal in a specific application scenario.
In this paper, we propose a general method to

optimize the operating system kernel for each specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys ’14 June 25–26 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

application. In our method, we take advantage of a
compiler optimization technique called profile-guided
optimization (PGO). PGO is commonly used in user
applications for performance improvement. Well-known
projects such as Firefox [16] and PHP [14] have already
adopted this technique for a few years. But as far
as we know, the technique has not been applied to
the operating system kernel yet. We implement the
method in the Linux kernel and show that it is an
effective method for improving the performance of
various popular server applications.
We decide to conduct experiments on server appli-

cations mainly for three reasons. First, many server
applications run on dedicated servers. For example,
many web servers running Apache do not run other
applications. This feature makes server applications
a perfect target of application-specific kernel optimiza-
tion. Second, server applications are key components of
the Internet infrastructure. Improving the performance
of server applications has significant potential benefit
to billions of Internet users. Third, many server
applications are system-intensive, thus making kernel
optimizations more accelerative.
Performance is a very hot topic in the operating

system kernel community. We have seen numerous
discussions on performance regressions and related bug
fixes in the Linux kernel mailing list. Recent research
on kernel performance mainly focuses upon problems
faced in the multicore era, such as kernel locking
and synchronization mechanisms [15], cache partition-
ing and management [22], cache-friendly process co-
scheduling [18], DDR-friendly memory allocation [20].
Compared with our method, previous work mainly
focuses on specific performance problems, instead of
specific applications.
The main contribution of our method is making

application-specific kernel optimizations possible. Our
method enables applications to run on matching oper-
ating system kernels that can maximize performance.
The optimization process does not involve any source
code modification either to the target applications or to
the kernel.
The rest of this paper is organized as follows. Sec-http://dx.doi.org/10.1145/2637166.2637227

tion 2 provides some background knowledge about our
method. Readers that are familiar with the PGO
technique may skip this section. Section 3 describes
how we implement PGO in the Linux kernel. In
Section 4, we evaluate the method with six real-world
server applications. In Section 5, we discuss advantages
of using PGO in the kernel and some problems with
applying the PGO technique to the kernel. Section 6
concludes this paper.

2. BACKGROUND
Profile-guided optimization has been well studied

in the compiler design field [17]. The technique is
supported by modern compilers including GCC [9],
Microsoft Visual C++ Compiler [11], Intel C++ Com-
piler [10], etc.
PGO consists of the following three phases.
The first phase is instrumentation. In this phase,

the compiler instruments the target application during
compilation in order to collect profile information that
will be used for later optimizations. The profile infor-
mation consists of control flow traces, value and address
profiles, etc. For example, the -fprofile-generate

option which is used in this phase in GCC enables
the following options: -fprofile-arcs, -fprofile-

values, -fvpt. The three options are responsible for
profiling control flow graphs, profiling values, and doing
value profile transformations respectively.
The second phase is collection. In this phase, the

instrumented target application is executed for several
times to collect profile information. The execution
process should be as close to real-world scenarios as pos-
sible. After execution, the collected profile information
is stored in some data files. In GCC, the data file format
is the same as the format used in gcov, the test coverage
program of GCC.
The third phase is optimization. In this phase,

the compiler uses the profile information collected in
the second phase to optimize the target application.
The profile information helps the compiler make better
decisions at code layout, function inlining, loop un-
rolling, etc. In GCC, option -fprofile-use enables
optimizations based on profile information.

3. IMPLEMENTATION
We implement the PGO technique in the Linux kernel

according to the three previously explained phases.
Figure 1 demonstrates our implementation.
Gcov is a test coverage program in GCC and it shares

the same instrumentation infrastructure with PGO.
Since gcov has already been supported by the Linux
kernel [19], we only need to make a few modifications
to further support PGO in the kernel. The gcov option
--coverage in GCC only enables the -fprofile-arcs
instrumentation, so what we do is adding support for

 Configure the kernel with:
CONFIG_GCOV_KERNEL=y
CONFIG_GCOV_PROFILE_ALL=y

 Build the instrumented kernel:
make CFLAGS_GCOV=-fprofile-generate

 Run the target application on the
instrumented kernel

 Collect profile information from:
/sys/kernel/debug/gcov

 Reconfigure the kernel with:
CONFIG_GCOV_KERNEL=n
CONFIG_GCOV_PROFILE_ALL=n

 Build the optimized kernel:
make clean
make KCFLAGS="-fprofile-use ..."

Phase 1

Phase 2

Phase 3

Figure 1: Kernel PGO Process

options -fprofile-values and -fvpt into the kernel.
We add the following profilers and their corresponding
merging functions that are used in the instrumen-
tation phase to the kernel gcov subsystem: indirect
call profiler, ior profiler, average profiler, one value
profiler, interval profiler, and pow2 profiler. Moreover,
instrumenting certain kernel source files will break the
kernel, resulting in boot failure. Therefore, we disable
instrumentation options for these source files in the
kernel makefile.
In the first phase, we configure the kernel with options

CONFIG_GCOV_KERNEL and CONFIG_GCOV_PROFILE_ALL

enabled and set kernel makefile variable CFLAGS_GCOV

to “-fprofile-generate”. Then we build the instrumented
kernel as normal.
In the second phase of our method, we run appli-

cations with the instrumented kernel to collect profile
information. Afterwards, a shell script is used to collect
profile data files from DebugFS.
Another problem with kernel PGO is that the col-

lected profile information lacks counter summary and
histogram, which are required by GCC during optimiza-
tion. The summary and histogram serve as statistics at
the whole program level. For user applications, they are
calculated by libgcov at the program exit time. But for
the kernel, such a mechanism is not feasible. Instead, we

Table 1: Kernel PGO Evaluation Environment

Processor Intel Core-i7 4770
Memory 32GB DDR3 1600MHz
Network 1Gbps LAN
Kernel Linux 3.13.5

Kernel compiler GCC 4.8.3 prerelease
Operating system Debian sid amd64

File system tmpfs

write a tool to help calculate the counter summary and
histogram for the collected kernel profile information.
In the third phase of our method, we disable gcov-

related kernel options previously set on, and rebuild
the kernel with kernel makefile variable KCFLAGS set as
“-fprofile-use -fprofile-correction -Wno-error=coverage-
mismatch -fprofile-dir=/path/to/profile”. The kernel
image we get in this phase is profile-guided optimized.

4. EVALUATION
We evaluate our method with six server applications,

namely Apache, nginx, MySQL, PostgreSQL, Redis and
memcached. We do not choose popular PHP or Java-
based server applications like WordPress or Confluence
because their performance mostly depends on the PHP
intepreter or the Java virtual machine, as well as the
supporting web servers and database servers.
Our evaluation environment is listed in Table 1. The

six server applications run on the test machine. We
have another client machine running testing tools. The
test machine and the client machine are connected via
gigabit Ethernet. We choose the Debian sid distribution
for better support of the hardware and the version of
kernel we use. We use tmpfs in our evaluation to avoid
the uncertainty of disk I/O performance.
In our evaluation, we first run the server appli-

cations on the vanilla kernel and get their perfor-
mance values via benchmarking tools. Then we do
the PGO process described in previous sections and
get six optimized kernels, for the six server applications
respectively. In the profile collection phase, the specific
server application runs on the instrumented kernel and
the benchmarking tool is executed to produce profile
information. Afterwards, we run the server applications
on their corresponding optimized kernels and get their
performance values again via benchmarking tools.
Figure 2 shows the evaluation result, which is the

performance improvements of the six server applica-
tions running on the optimized kernels over the vanilla
kernel. For Apache, MySQL, PostgreSQL, Redis and
memcached, the performance improves by 1.71–10.27%.
But for nginx, the performance decreases by 0.59%.
Details about the server applications and performance
results will be explained subsequently.

4.1 Apache
Apache is the most popular web server with a market

share up to 38% of all websites [8]. It was investigated
in previous work [15] and proved to be system-intensive.
In our evaluation, we use the apache2 package dis-
tributed with Debian sid, which is Apache Version 2.4.7.
We configure Apache to use the MPM event module [2]
and increase the “MaxRequestWorkers” option, which
determines the maximum number of connections that
will be processed simultaneously, for later testing.
On the client, we use ab [1], the Apache HTTP

server benchmarking tool, to get the performance of
Apache running on the test machine. The size of the
requested file is 4 bytes to avoid saturating the network
bandwidth. We run 4 ab instances simultaneously, each
one at concurrency level 100, performing 100 HTTP
requests at a time. Each ab instance sends one million
requests and outputs the average number of requests
processed in one second. We add the four numbers to
get the throughput of Apache.
On the vanilla kernel, Apache can handle 63889

requests per second. On the profile-guided optimized
kernel, Apache can handle 70449 requests per second.
The over 10% performance improvement shows that
the Apache 2.4 release is still very system-intensive.
Even though the MPM event module is introduced
for asynchronous processing, the fundamental model
of Apache is still based on threads. By optimizing
kernel hot paths with profile information, we achieve
impressive performance improvement on Apache.

4.2 Nginx
Nginx is another popular web server, which is re-

markable for its high performance and low resource
consumption. It is the third most widely used web
server with a market share of over 15% among all
websites [8]. In our evaluation, we use the nginx package
distributed with Debian sid, which is Version 1.4.7.
We increase the worker processes option to 8 and the
worker connections option to 1000.
On the client, we also use ab for benchmarking, with

the same settings as we do on Apache.
On the vanilla kernel, nginx can handle 97065 re-

quests per second. On the profile-guided optimized
kernel, the throughput of nginx decreases by 0.59% to
96494 requests per second. Due to the asynchronous
event-driven approach adopted by nginx, it is less
system-intensive than Apache. One possible reason
that the PGO technique causes nginx performance
degradation is that the critical kernel path after PGO
becomes less code cache friendly to nginx. As we know,
improper decisions at code layout, function inlining
or loop unrolling may result in disturbance to cache
locality. The performance degradation in this single
case might be related to compiler misoptimization. But

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

11.00%

Apache nginx MySQL PostgreSQL Redis (set) Redis (get) memcached (set) memcached (get)

Figure 2: Server Application Performance Improvements with Kernel PGO

we still need to investigate the root cause to make our
method more reliable.

4.3 MySQL
MySQL is the most popular open-source relational

database management system [5]. It is widely used in
small websites for data management. In our evaluation,
we use MySQL Community Server 5.6.16, which is the
latest generally available release. We configure MySQL
to use the default InnoDB storage engine [7].
The benchmarking tool we use to test the perfor-

mance of MySQL is dbt2 [4], which is an open-source
implementation of the TPC-C benchmark specification.
It is an online transaction processing performance test.
The dbt2 benchmark suite consists of a dataset genera-
tor, a database client, and a benchmarking driver. We
first generate a dataset of 8 warehouses and import it to
MySQL. Then we run the database client program and
MySQL on the test machine. On the client machine,
we run the dbt2 driver with 100 threads per warehouse.
Each thread simulates a terminal connected to the
server. The dbt2 performance metric is NOTPM, the
number of new order transactions processed in one
minute.
On the vanilla kernel, the throughput of MySQL

is 69163 NOTPM. On the profile-guided optimized
kernel, the throughput increases to 72474 NOTPM.
The 4.79% improvement shows that MySQL is also
system-intensive, although data query processing is
CPU-intensive.

4.4 PostgreSQL
PostgreSQL is the second most popular open-source

relational database management system [5]. Compared
with MySQL, it provides better fundamental database
features and more database capabilities [3]. In our
evaluation, we use PostgreSQL 9.3.3. We increase the

checkpoint segments option to 64 because of checkpoint
warnings in the PostgreSQL log file [13].
The benchmarking tool we use is also dbt2. We use

the same settings as we do on MySQL.
On the vanilla kernel, the throughput of PostgreSQL

is 71852 NOTPM. On the profile-guided optimized
kernel, the throughput increases to 73080 NOTPM.
Previous research also investigated PostgreSQL [15].
As the Linux kernel and PostgreSQL evolves, the
performance of PostgreSQL is less restricted by the
kernel. So our method achieves less performance
improvement on PostgreSQL than on MySQL.

4.5 Redis
Redis is the most popular key-value store [5], widely

available on many cloud platforms. Redis is a mostly
single-threaded program and makes use of event-driven
techniques to achieve concurrency [12]. In our evalua-
tion, we use Redis Version 2.8.7.
On the client, we use the redis-benchmark tool,

which is released together with Redis, to test the
performance. We test the throughput of set and get
operations. In the test, we run 4 redis-benchmark
instances simultaneously, with 100 parallel connections
per instance.
On the vanilla kernel, the throughput of Redis is

326363 set operations per second and 344239 get op-
erations per second. On the profile-guided optimized
kernel, the throughput increases to 336074 set opera-
tions per second and 359769 get operations per second.
Compared with nginx, which also uses event-driven
techniques, the throughput of Redis improves after
kernel PGO. We believe the reason is that Redis is more
system-intensive due to much more network connections
processed per second than nginx.

4.6 Memcached

Memcached is the second most popular key-value
store [5], which is also widely available on various cloud
platforms. Compared with Redis, memcached is multi-
threaded as well as event-driven. But memcached does
not support data persistence. In our evaluation, we use
memcached 1.4.17.
Although memcached supports multi-threading very

well, we configure memcached to use only one thread be-
cause we fail to saturate the server if memcached serves
with multiple threads. The same reason applies to our
Redis test: we do not run multiple Redis instances
on the test machine. Both Redis and memcached are
highly efficient [6].
When testing memcached, we use the mc-benchmark

tool, which is ported from the redis-benchmark tool
to adapt to the memcached protocol. Benchmarking
settings are the same as we do on Redis.
On the vanilla kernel, the throughput of memcached

is 366089 set operations per second and 514800 get
operations per second. On the profile-guided optimized
kernel, the throughput increases to 377569 set opera-
tions per second and 528159 get operations per second.
Since memcached does not support data persistence, it
is faster than Redis. According to previous research,
memcached itself is good enough, hardware is the
bottleneck [15].

5. DISCUSSION
The method we propose in this paper to improve

application performance by optimizing the underlying
operating system kernel via the PGO technique is
a general approach. We can use this method to
adapt the kernel to any specific application or scenario.
Although the method is not specialized, the profile-
guided optimized kernel we get from this method is
specific to the application scenario it is optimized for.
We should not expect that the kernel performs well on
other scenarios according to the principle of the PGO
technique.
In this paper, we mainly focus on optimizing the

kernel for server applications because many server appli-
cations are known to be system-intensive. Since servers
play a key role in the Internet, a little improvement
on server performance may contribute a lot to the
productivity of the whole Internet.
Unlike server applications, desktop applications and

mobile applications are mostly interactive. The per-
formance problems in these applications often reside
in their models of human-computer interaction. For
mobile applications, energy efficiency is much more
important. As far as we can see, there is little we can
do in the kernel to help deal with the energy bugs or
other issues discovered in mobile applications.
Recent research concerning operating system kernel

performance is concentrated on specific features of the

kernel, such as locking [15], memory management [20,
22], process scheduling [18]. These optimizations are
general to applications. Looking into the Linux kernel
mailing list, we find that posts about improving kernel
performance also have the same characteristic. Our
method pursues the opposite: it targets the whole
kernel but is specific to each application scenario.
Linus Torvalds was in favor of checking compiler

hints in the kernel source code instead of shipping
profile information with kernel releases [21]. Although
runtime profile feedback can help developers optimize
the code, the optimization requires a lot of tradeoffs
because source code changes must be general. In our
method, there is no need to ship profile information
with releases since different users may have different
customizations on their own. We only provide a way
to make customized optimizations possible. As long as
the compiler is smart enough, our method should be
reliable.
Currently, the compiler only takes into account the

kernel profile information. Although the application
behavior is to some extent reflected in the kernel profile
information, the compiler still knows nothing about the
interaction between the kernel and the application.
In our evaluation, we make use of benchmarking tools

to test the performance of the six server applications
because it is difficult to figure out and measure real-
world workloads. We think that the results from
ab, redis-benchmark and mc-benchmark are meaningful
because the functionalities of Apache, nginx, Redis and
memcached are onefold. The dbt2 benchmark suite
implements the TPC-C benchmark specification, which
should also be representative.

6. CONCLUSION
In this paper, we propose a new method for improving

application performance by optimizing the underlying
operating system kernel. Unlike previous work, our
method targets the whole kernel but is specific to each
application scenario. We implement the method in
the Linux kernel with the support of profile-guided
optimization from GCC.
In evaluation, we run benchmarks on six popu-

lar server applications. For Apache, MySQL, Post-
greSQL, Redis and memcached, performance improve-
ments range from 1.71% up to 10.27%. But for nginx,
performance decreases by 0.59% using our method.
The culprit leading to performance degradation will
be investigated to make our method more robust and
reliable.
As future work, we will look into kernel PGO under

real-world workloads such as small servers running
Linux, Apache, MySQL and PHP together, servers
hosting virtual private servers, clusters used for big data
analysis.

ACKNOWLEDGMENT
This work is supported by the National Basic Research
Program of China (973) under Grant No. 2011CB302604,
the High-Tech Research and Development Program of
China under Grant No. 2013AA01A605, the National
Natural Science Foundation of China under Grant No.
61103026, 61121063, U1201252.

References
[1] ab - Apache HTTP server benchmarking tool.

http://httpd.apache.org/docs/current/

programs/ab.html.

[2] Apache MPM event. http://httpd.apache.org/
docs/current/mod/event.html.

[3] Comparison of relational database management
systems. http://en.wikipedia.org/wiki/

Comparison_of_relational_database_

management_systems. Accessed: 2014-03-20.

[4] Database test 2. http://osdldbt.sourceforge.

net.

[5] DB-engines ranking. http://db-engines.com/

en/ranking. Accessed: 2014-03-20.

[6] How fast is Redis? http://redis.io/topics/

benchmarks.

[7] The InnoDB storage engine. http:

//dev.mysql.com/doc/refman/5.6/en/innodb-

storage-engine.html.

[8] March 2014 web server survey. http://news.

netcraft.com/archives/2014/03/03/march-

2014-web-server-survey.html.

[9] Options that control optimization. http:

//gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html.

[10] Profile guided optimization (PGO) options.
http://software.intel.com/sites/

products/documentation/doclib/stdxe/

2013/composerxe/compiler/cpp-win/GUID-

87339BCB-7547-4633-93EB-E11EF55906AA.htm.

[11] Profile-guided optimizations. http://msdn.

microsoft.com/en-us/library/e7k32f4k.aspx.

[12] Redis latency problems troubleshooting. http://

redis.io/topics/latency.

[13] Write ahead log. http://www.postgresql.org/

docs/9.3/static/runtime-config-wal.html.

[14] Asthana, A. Speed up Windows PHP
performance using profile guided optimization
(PGO). http://blogs.msdn.com/b/vcblog/
archive/2013/05/06/speeding-up-php-

performance-for-your-application-using-

profile-guided-optimization-pgo.aspx.

[15] Boyd-Wickizer, S., Clements, A. T., Mao,
Y., Pesterev, A., Kaashoek, M. F., Morris,
R., and Zeldovich, N. An analysis of Linux
scalability to many cores. In Proceedings of the 9th
USENIX Conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2010),
OSDI’10, USENIX Association, pp. 1–8.

[16] Glek, T. Squeezing every last bit of
performance out of the Linux toolchain.
https://blog.mozilla.org/tglek/2010/

04/12/squeezing-every-last-bit-of-

performance-out-of-the-linux-toolchain/.

[17] Gupta, R., Mehofer, E., and Zhang, Y.
Profile guided code optimizations. In The Compiler
Design Handbook, Y. N. Srikant and P. Shankar,
Eds. CRC Press, 2002.

[18] Jaleel, A., Najaf-abadi, H. H., Subrama-
niam, S., Steely, S. C., and Emer, J. CRUISE:
Cache replacement and utility-aware scheduling. In
Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (New York, NY,
USA, 2012), ASPLOS XVII, ACM, pp. 249–260.

[19] Oberparleiter, P., Nemeth, M., and
Hrbata, F. Using gcov with the Linux kernel.
https://www.kernel.org/doc/Documentation/

gcov.txt.

[20] Park, H., Baek, S., Choi, J., Lee, D., and
Noh, S. H. Regularities considered harmful:
Forcing randomness to memory accesses to reduce
row buffer conflicts for multi-core, multi-bank
systems. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(New York, NY, USA, 2013), ASPLOS ’13, ACM,
pp. 181–192.

[21] Torvalds, L. https://lkml.org/lkml/2006/1/
5/350.

[22] Zhang, X., Dwarkadas, S., and Shen, K.
Towards practical page coloring-based multicore
cache management. In Proceedings of the 4th ACM
European Conference on Computer Systems (New
York, NY, USA, 2009), EuroSys ’09, ACM, pp. 89–
102.

http://httpd.apache.org/docs/current/programs/ab.html
http://httpd.apache.org/docs/current/programs/ab.html
http://httpd.apache.org/docs/current/mod/event.html
http://httpd.apache.org/docs/current/mod/event.html
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://osdldbt.sourceforge.net
http://osdldbt.sourceforge.net
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://redis.io/topics/benchmarks
http://redis.io/topics/benchmarks
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://news.netcraft.com/archives/2014/03/03/march-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/03/03/march-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/03/03/march-2014-web-server-survey.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-87339BCB-7547-4633-93EB-E11EF55906AA.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-87339BCB-7547-4633-93EB-E11EF55906AA.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-87339BCB-7547-4633-93EB-E11EF55906AA.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-87339BCB-7547-4633-93EB-E11EF55906AA.htm
http://msdn.microsoft.com/en-us/library/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/e7k32f4k.aspx
http://redis.io/topics/latency
http://redis.io/topics/latency
http://www.postgresql.org/docs/9.3/static/runtime-config-wal.html
http://www.postgresql.org/docs/9.3/static/runtime-config-wal.html
http://blogs.msdn.com/b/vcblog/archive/2013/05/06/speeding-up-php-performance-for-your-application-using-profile-guided-optimization-pgo.aspx
http://blogs.msdn.com/b/vcblog/archive/2013/05/06/speeding-up-php-performance-for-your-application-using-profile-guided-optimization-pgo.aspx
http://blogs.msdn.com/b/vcblog/archive/2013/05/06/speeding-up-php-performance-for-your-application-using-profile-guided-optimization-pgo.aspx
http://blogs.msdn.com/b/vcblog/archive/2013/05/06/speeding-up-php-performance-for-your-application-using-profile-guided-optimization-pgo.aspx
https://blog.mozilla.org/tglek/2010/04/12/squeezing-every-last-bit-of-performance-out-of-the-linux-toolchain/
https://blog.mozilla.org/tglek/2010/04/12/squeezing-every-last-bit-of-performance-out-of-the-linux-toolchain/
https://blog.mozilla.org/tglek/2010/04/12/squeezing-every-last-bit-of-performance-out-of-the-linux-toolchain/
https://www.kernel.org/doc/Documentation/gcov.txt
https://www.kernel.org/doc/Documentation/gcov.txt
https://lkml.org/lkml/2006/1/5/350
https://lkml.org/lkml/2006/1/5/350

	Introduction
	Background
	Implementation
	Evaluation
	Apache
	Nginx
	MySQL
	PostgreSQL
	Redis
	Memcached

	Discussion
	Conclusion

