A History-Based Matching Approach to Identification of Framework Evolution

Sichen Meng1,2, Xiaoyin Wang1,2, Lu Zhang1,2, Hong Mei1,2
1Key Laboratory of High Confidence Software Technologies, Ministry of Education
2School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
\{mengsc11,wangxy06,zhanglu,meih\}@sei.pku.edu.cn

Abstract—In practice, it is common that a framework and its client programs evolve simultaneously. Thus, developers of client programs may need to migrate their programs to the new release of the framework when the framework evolves. As framework developers can hardly always guarantee backward compatibility during the evolution of a framework, migration of its client program is often time-consuming and error-prone. To facilitate this migration, researchers have proposed two categories of approaches to identification of framework evolution: operation-based approaches and matching-based approaches. To overcome the main limitations of the two categories of approaches, we propose a novel approach named HiMa, which is based on matching each pair of consecutive revisions recorded in the evolution history of the framework and aggregating revision-level rules to obtain framework-evolution rules. We implemented our HiMa approach as an Eclipse plug-in targeting at frameworks written in Java using SVN as the version-control system. We further performed an experimental study on HiMa together with a state-of-art approach named AURA using six tasks based on three subject Java frameworks. Our experimental results demonstrate that HiMa achieves higher precision and higher recall than AURA in most circumstances and is never inferior to AURA in terms of precision and recall in any circumstances, although HiMa is computationally more costly than AURA.

Keywords—framework evolution; software migration; mining version history; natural language processing

I. INTRODUCTION

Nowadays, many developers choose to use software frameworks to reduce the cost and/or improve the quality of application development. Just as other software products, software frameworks also need evolution to obtain new features and/or improve quality. As a result, when a software framework evolves, developers of client programs of the framework may need to migrate their client programs to the new release of the framework to take advantage of the new release. Ideally, developers of a framework should guarantee that the new release be backwardly compatible with each release before the new release, so that developers of any client program using an old release of the framework are able to immediately migrate to the new release without further modifying the client program. However, researchers (e.g., Chow and Notkin [1], Steyaert et al. [2], Balaban et al. [3], and Dig and Johnson [4]) have identified the pervasive existence of backward incompatibility between a new release and an old release in frameworks. Wu et al. [5] presented an example of backward incompatibility in a widely used framework (i.e., between JHotDraw 5.2 and 5.3). Thus, migration from an old release of a framework to a new release may imply extra modifications of the client code. These modifications may typically be tedious and require a lot of effort [5]. To alleviate the backward incompatibility problem, it is necessary to identify the evolution rules between the two releases of the framework.

In particular, researchers (e.g., Wu et al. [5]) have demonstrated the necessity of automatically identifying four types of evolution rules: one-to-one (i.e., one method in the old release replaced by another method in the new release), one-to-many (i.e., one method in the old release replaced by more than one method in the new release), many-to-one (i.e., more than one method in the old release replaced by one method in the new release), and simply-deleted (i.e., methods in the old release not appearing and having no replacements in the new release).

In fact, identification of framework evolution has become a research focus in recent years. Roughly speaking, there are mainly two categories of approaches to identification of framework evolution.

First, researchers (e.g., Henkel and Diwan [6]) have proposed operation-based approaches, which use Integrated Development Environments (IDEs) to record change operations related to framework evolution and replay the recorded operations to identify framework evolution. These approaches typically are able to achieve both high recall and high precision1, but the requirement of using specialized IDEs makes them inapplicable for most existing frameworks.

Second, researchers (e.g., Wu et al. [5]) have proposed matching-based approaches, which compute evolution rules via matching the source code of the two releases. Due to the independence of IDEs, matching-based approaches are applicable for more existing frameworks. But matching-based approaches can hardly always achieve high precision without compromising recall due to the inability to sufficiently use finer information during framework evolution. As a sub-category of matching-based approaches, there are also approaches (e.g., Schäfer et al. [7]) that analyze adaptations in only instantiation code to infer framework-evolution rules.

1Recall refers to the ratio of correctly identified rules to all genuine rules and precision refers to the ratio of correctly identified rules to all identified rules.
The use of instantiation code\(^2\) may help improve precision, but the reliance on only instantiation code makes these approaches difficult to obtain rules related to Application Programming Interfaces (APIs) not used in instantiation code.

In this paper, we propose a history-based matching approach (named HiMa) to identification of framework evolution. The basic idea of HiMa is to identify change rules related to framework evolution via matching each pair of consecutive revisions of the framework stored in its version-control system (e.g., SVN\(^3\)), and aggregate the revision-level rules to obtain the evolution rules between the two releases. To achieve wide applicability, HiMa relies on only information stored in common software-development infrastructure. To achieve both high precision and high recall, HiMa analyzes all revisions between the two releases during the evolution history of the framework. Moreover, as our empirical investigation has identified that comments associated with revisions often contain information about framework evolution, we also utilize these comments in HiMa to further improve precision and recall.

To evaluate our HiMa approach, we conducted an experimental study of HiMa together with a recently proposed matching-based approach (i.e., AURA [5]) using six tasks based on three subject Java frameworks. Our experimental results demonstrate that HiMa achieves higher precision and higher recall than AURA in most circumstances and is never inferior to AURA in any circumstances, although the computational cost of HiMa is higher than that of AURA.

This paper makes the following main contributions:

- A novel approach, which overcomes main limitations of both categories of existing approaches, to identification of framework evolution.
- A technique based on natural language processing to identify change rules from comments associated with framework revisions.
- An experimental comparison of our approach with AURA to demonstrate the effectiveness of our approach.

The remaining of this paper is organized as follows. Section II reviews existing research related to ours. Section III presents our approach. Section IV reports an experimental study of our approach. Section V discusses further issues. Section VI concludes with pointers to future work.

II. RELATED WORK

A. Identification of Framework Evolution

For the ease of presentation, we classify existing approaches to identification of framework evolution into two categories: operation-based approaches and matching-based approaches.

1) Operation-Based Approaches: The basic idea of operation-based approaches is to record change operations performed on the framework in an IDE and replay the operations to identify framework evolution. Henkel and Diwan [6] proposed CatchUp!, which uses a specialized IDE to record refactoring operations performed on APIs of the framework and replay these operations to update client code. Moreover, Dig et al. [8] proposed a refactoring-aware software configuration management tool named MolhadoRef, which also utilizes recording and replaying of change operations to merge versions. Although MolhadoRef does not explicitly target at identification of framework evolution, it can be adapted for this purpose.

As API refactoring operations can accurately characterize how the framework evolves, operation-based approaches are typically very accurate. That is to say, both recall and precision of operation-based approaches can be very high. However, recording and maintaining API refactoring operations along the evolution history of the framework may be a burden for framework developers. Thus, although some widely used IDEs (e.g., JBuilder [9]) already provide the capability of recording change operations, many existing frameworks are developed with IDEs not providing (or switching off) the capability of recording change operations. As a result, operation-based approaches are not widely applicable for existing frameworks.

To overcome limitations of existing operation-based approaches, our approach is based on revisions instead of operations in the evolution history of the framework. Due to the wide adoption of version-control systems (e.g., SVN) in practice, there may typically exist a large number of revisions between two releases of a framework. Of course, information in revisions is still less fine than information in operations. But the availability of revisions is much higher than that of operations. Moreover, as developers often provide a summary of change in the form of plain texts associated with a revision, our approach also uses this information to further improve accuracy.

2) Matching-Based Approaches: The basic idea of matching-based approaches is to compare the source code of the two releases, and figure out evolution rules from the differences between the two releases using some heuristics. In particular, researchers have investigated the following types of heuristics: heuristics based on call dependency [10], [11], [12], [13], [5], [14], heuristics based on text similarity [15], [11], [12], [16], [17], [18], [5], [14], heuristics based on structure similarity [16], and heuristics based on metrics [19], [11], [12], [20], [18], [14]. Some approaches even use more than one type of heuristics. Godfrey and Zou [11] proposed to use origin analysis, which relies on heuristics based on text similarity, call dependency, and metrics, to infer evolution rules. As Godfrey and Zou’s approach is semi-automatic, S. Kim et al. [12] further proposed to automate their approach. Weißgerber and Diehl [20]
proposed to use metrics based on syntactical differences to infer candidate refactorings from changes between file versions and use clone analysis to rank the candidate refactorings. Xing and Stroulia [16] proposed Diff-Catchup, which matches two models written in the Unified Modeling Language (UML) using heuristics based on text similarity and structure similarity. M. Kim et al. [17] summarized some patterns for name changes during framework evolution and used these patterns to infer rules of framework evolution. The most advanced matching-based approach is AURA [5], which involves multiple rounds of iteration using heuristics based on call dependency and text similarity. According to Wu et al. [5], the AURA approach is able to overcome several limitations of previous approaches and vastly improve recall. However, AURA typically concedes some decrease in precision and in some special cases the decrease in precision may be significant.

It should be noted that some of the preceding heuristics can be extended to instantiation code to explore how instantiation code of the framework adapts to framework evolution. Schäfer et al. [7] proposed to infer rules of framework evolution from the changes in client code for migrating from one release to another. Dagenais and Robillard [21] proposed SemDiff, which infers rules of framework evolution via analyzing how the framework changes itself in response to its evolution. Due to the abundance of adaptation examples for framework evolution, using instantiation code can improve precision due to the capability to corroborate between adaptation examples. Moreover, SemDiff considers adaptations in the evolution history between the two releases. The use of adaptation information in a finer granularity further improves its accuracy. However, rules inferred from instantiation code do not include those related to APIs not used in instantiation code. That is to say, using only instantiation code may even decrease recall. Note that frameworks typically contain cold spots [22], which are APIs seldom used in instantiation code.

As matching-based approaches do not rely on recorded operations, applicability of matching-based approaches is typically higher than operation-based approaches. However, matching-based approaches can hardly always be very accurate due to the inability to sufficiently use finer evolution information. In fact, matching-based approaches typically need to balance between precision and recall. In general, the AURA approach makes a good trade-off between precision and recall, but some complex changes inside method bodies may mislead AURA [5].

To overcome limitations of existing matching-based approaches, our approach uses finer information recorded in revisions together with their comments recorded in the evolution history of the framework. Because of the abundance of information, our approach is able to use strict criteria to identify enough rules and corroborate among the information to discard incorrect rules. Note that, although Weißgerber and Diehl’s approach \footnote{Weißgerber and Diehl’s approach actually targets at refactoring identification, which is slightly different from framework-evolution identification. Please refer to Schäfer et al. [7] for further discussion on the main difference between the two problems.} [20] also utilizes file versions in version-control systems, their approach aims to infer possible refactorings from one transaction committed to a framework but not to further aggregate refactorings inferred from multiple transactions to obtain evolution rules between two releases of the framework. Furthermore, their approach does not utilize comments associated with versions and requires human intervention to check the ranked list.

B. Natural Language Processing for Software Engineering

Sawyer et al. [23] proposed REVERE, which combines part-of-speech (POS) [24] tagging and semantic tagging to synthesize requirements from documents. Fantechi et al. [25] proposed to analyze use case descriptions in natural languages using natural language parsing [26]. Kof [27] proposed to use POS tagging to analyze requirement documents to obtain missing objects and actions. Shepherd et al. [28] proposed to locate and understand action-oriented concerns in programs using a combination of several Natural Language Processing (NLP) techniques. Tan et al. [29] proposed iComment, which combines NLP and other techniques to extract explicit program rules and detects inconsistencies between comments and source code. On top of iComment, Tan et al. [30] proposed aComment, which combines NLP with call-graph analysis to infer specifications for interruptions and detects interruption-related bugs. Zhong et al. [31] proposed Doc2Spec, which combines named entity recognition (NER) [32] and class-hierarchy analysis to infer implicit specifications from object-oriented API documents. Abebe and Tonella [33] proposed to use natural language parsing to extract concepts from source code.

To our knowledge, our approach, which uses specialized NLP techniques with natural language parsing [26] to infer change rules from revision comments, is the first approach that applies NLP for framework-evolution identification.

III. OUR APPROACH

A. Basic Idea

The basic idea of our approach is to identify change rules between each pair of consecutive revisions and aggregate these change rules to obtain the evolution rules between the two releases. Note that a mainstream version control system such as SVN typically records every revision (subversion) of the entire software system under development.

Intuitively, these revisions provide more information of changes made in the evolution history of the framework. For example, Struts 1.1 and Struts 1.2.4 correspond to revisions 50638 and 51732 in its corresponding SVN repository with 1073 revisions containing code changes in between.

Furthermore, according to our empirical evidence, framework developers often summarize the main changes between a revision and its predecessor revision in the comment for
checking in the successor revision. When identifying change rules between two revisions, we use the comment associated with the successor revision as our initial clues.

B. Matching Two Consecutive Revisions

We use the following two main steps to identify change rules between two revisions. First, we analyze the comment of the successor revision to identify some raw change rules, and validate the raw change rules against the source code to obtain a set of initial change rules. Second, we expand the set of identified initial change rules to obtain change rules for other changes between the two revisions. Unlike AURA, to reduce computational cost, we do not use iteration.

1) Identifying Initial Change Rules: We use the following five sub-steps to identify initial change rules.

First, we split the entire comment into sentences. In natural language processing, delimiter punctuation marks (e.g., '?', '!', and '.') serve as separations of sentences. We also rely on these delimiters, but we need to handle the following two special cases. The first case is the dot mark serving as a connector of a class and its member (e.g., the following two special cases. The first case is the dot mark serving as a connector of a class and its member (e.g., `Circle.tostring()`). To deal with this case, we use a dot together with a following space instead of mere a dot as a delimiter. The second case is the hard new-line symbol. As developers may directly use a hard new-line symbol to start a new sentence, we also count hard new-line symbols as delimiters.

Second, we filter out irrelevant sentences as follows. Here, we are primarily interested in words and phrases meaning either addition, deletion, or replacement, which are referred to as change identifiers in this paper. In fact, we maintain three synonym lists (which we put on our project website to keep them always consistent with our implementation), each representing a change type, which could be addition, deletion, or replacement. Furthermore, we are also interested in sentences containing entity names (i.e., class names or method names). In particular, we deem the following cases as entity names: 1) a word after the word “class” or the word “method”, 2) a pair of empty parenthesis or a pair of parenthesis inside which the text matches the syntax of method signatures, 3) a word immediately following a dot (e.g., `Resize in Circle.Resize`), and 4) a word composed of several words through underlines or capitalization of the following words (e.g., `ContentTransferEncodingField`). Thus, we keep only those sentences that contain at least one change identifier and at least one entity name. Note that the criteria for entity names considered here may not be very accurate. The aim of using these criteria is to filter out irrelevant sentences, and we further validate entity names in the final sub-step.

Third, for each remaining sentence after the filtering in the second sub-step, if all the change identifiers are of the same change type (denoted as T), we extract one raw change rule of change type T consisting of all the entity names in the sentence. For example, if a sentence contains three entity names (denoted as Name1, Name2 and Name3) and the change type is addition, we denote the change rule as `<addition, {Name1, Name2, Name3}>`.

Fourth, if such a sentence contains change identifiers of more than one change type, we extract more than one change rule for this sentence. To achieve this goal, we use a natural language parser to identify the verbs in the sentence and all the words associated with each verb. If such a verb is a change identifier, we extract a rule for the verb considering only entity names associated with the verb in a way similar to the third sub-step. For example, from sentence “we added method A() and changed method B()”, our comment analysis is able to identify two raw rules: `<addition, {A}>` and `<replacement, {B}, {B1}>`. According to our experience, there are only a few sentences containing change identifiers of two or more change types. Thus, the heavy-weight natural language parsing would not be of too much a burden.

Finally, we validate and refine the raw change rules identified in the third and the fourth sub-steps against the source code of the two revisions. In particular, we use the following strategies for our validation and refinement.

- If the raw rule type is addition, for each entity name (denoted as n) in this rule, we check whether n exists in the successor revision and does not exist in the predecessor revision. If so, we keep n in the rule; and otherwise, we remove n from the rule. If n is a method name, we deem n as an newly-added method. If n is a class name, we deem all methods in class n as newly-added methods.

- If the raw rule type is deletion, for each entity name (denoted as n) in this rule, we check whether n exists in the predecessor revision and does not exist in the successor revision. If so, we keep n in the rule; and otherwise, we remove n from the rule. If n is a method name, we deem n as a simply-deleted method. If n is a class name, we deem all methods in class n as simply-deleted methods.

- If the raw rule type is replacement, for each entity name (denoted as n) in this rule, we check whether n exists in the predecessor revision or exists in the successor revision. Here, we demand that all the entity names in this rule are class names or all the entity names are method names; otherwise, we ignore this raw rule due to uncertainty of whether it is class replacement or method replacement. We also ignore all entity names not appearing in either the predecessor revision or the successor revision. Among the remaining entity names, we deem entity names appearing only in the successor revision as target entities, and we deem the other entity names as source entities. According to Dig et al. [13] and Schäfer et al. [7], developers may keep both the source entity and the target entity in the successor revision for backward compatibility.
Similarly, we transform class replacement to method replacement: a one-to-one rule for each pair of exactly matched methods and one replacement rule for all the remaining methods. Thus, depending on the number of the source methods and the number of the target methods, each resulting change rule can be of one of the following types: one-to-one, many-to-one, one-to-many, or even many-to-many.

2) Expanding Initial Set of Change Rules: To expand the initial set of change rules identified in the first main step, similar to existing matching-based approaches, we also rely on call-dependency analysis. However, as the differences between two consecutive revisions are typically very small, we are able to use strict criteria without thresholds for our expansion.

First, we analyze the source code of the two revisions to obtain the set of source methods (i.e., methods in the predecessor revision but not in the successor revision) and the set of target methods (i.e., methods in the successor revision but not in the predecessor revision). We also remove methods already appearing in the initial set of change rules from the two sets. We denote the resulting set of source methods as M_S and the resulting set of target methods as M_T.

Second, based on M_S, M_T and change rules identified in the first main step, we use caller analysis to expand change rules as follows. The intuition is that methods always invoked in the same contexts may have correspondence. Given method s in the predecessor revision and method t in the successor revision, we call t matches s through one-to-one relationships (denoted as $M_{ss}(s, t)$), if and only if the signature of t is exactly the same as that of s or there is a one-to-one rule identified in the first main step between s and t. For a set of methods in the predecessor revision (denoted as S) and a set of methods in the successor revision (denoted as T), we extend the definition of $M_{ss}(s, t)$ to define $M_{ss}(S, T)$ as Formula 1.

$$M_{ss}(S, T) = \begin{cases}
 \text{true,} & \forall s \in S \exists t \in T \ M_{ss}(s, t) \\
 \text{false,} & \text{otherwise.}
\end{cases}$$

Thus, given a method (denoted as m_s) in M_S and a method (denoted as m_t) in M_T, let us denote the set of callers of m_s in the predecessor revision as $Call_{ss}(m_s)$ and the set of callers of m_t in the successor revision as $Call_{tt}(m_t)$. We deem that there is a replacement relationship between m_s and m_t, if and only if $M_{ss}(Call_{ss}(m_s), Call_{tt}(m_t))$. Note that we rely on only identified one-to-one relationships between methods to guarantee precision. Due to our definition of M_{ss}, it is likely for us to identify a subset (denoted as M'_S of M_S and a subset (denoted as M'_T of M_T such that there is a replacement relationship between each method in M'_S and each method in M'_T. That is to say, one expanded change rule may be either a one-to-one rule, a many-to-one rule, a one-to-many rule, or even a many-to-many rule, depending on the number of methods in M'_S and the number of methods in M'_T.

Figure 1 depicts an example (from Mime4J) for expansion with caller analysis. In the figure, methods `advanceToBoundary()` and `isEnded()` appear in both the predecessor revision and successor revision. We need to identify the relationships between methods `parentEOF()` and `consume()` appearing in only the predecessor revision and method `eof()` appearing in only the successor revision. As both `parentEOF()` and `eof()` are called by only `isEnded()`, we identify a one-to-one rule: `parentEOF()` replaced by `eof()`. We identify no rule for `consume()` in this sub-step.

Third, based on M_S, M_T and change rules identified in the first main step, we also use callee analysis to expand change rules. The intuition is that methods sharing very similar calling structures in implementation may have correspondence. Similar to our caller analysis, our callee analysis is also based on existing one-to-one relationships. However, we also need to further consider unaligned matching of callees in callee analysis. Given a subset (denoted as M'_S) of M_S and a subset (denoted as M'_T) of M_T, we deem that there is a replacement rule between M'_S and M'_T if and only if $M_{ts}(\bigcup_{m_e \in M'_S} Call_{ss}(m_e)), \bigcup_{m_e \in M'_T} Call_{tt}(m_e))$, where $Call_{ss}(m)$ denotes the set of callees of method m. To ensure the atomicity of the identified replacement rule,
we also demand that there is no replacement rule identified in this sub-step between any subset other than \(M'_S \) itself and any subset other than \(M'_T \) itself.

Figure 2 depicts an example (from jEdit) for expansion with callee analysis. In this figure, the following four methods appear in both the predecessor revision and the successor revision: `propertiesChanged()`, `updateFileView()`, `updatePopupMenu()`, and `maybeReloadDirectory()`. In the predecessor revision, all the four methods are called by `handleMessage()`, but in the successor revision, each of the four method is called by only one method. Using the preceding callee analysis, we are able to identify the splitting of the method for handling all messages into four methods, each handling a specific type of messages.

Fourth, among the remaining methods in \(M_S \) and \(M_T \), we further use some mapping conditions (which are actually inspired by Weißgerber and Diehl’s conditions for local refactorings [20]) to identify one-to-one replacement between methods that have no calling relationships with other methods. Let us use \(N(m), R(m), \) and \(P(m) \) to denote the name, the return type, and the parameters of \(m \), respectively. If there exist \(m_1 \in M_S \) and \(m_2 \in M_T \) such that \(m_1 \) and \(m_2 \) are in the same class and satisfy one of the following conditions: 1) \(N(m_1) \neq N(m_2) \land R(m_1) = R(m_2) \land P(m_1) = P(m_2) \), 2) \(N(m_1) = N(m_2) \land R(m_1) \neq R(m_2) \land P(m_1) = P(m_2) \), or 3) \(N(m_1) = N(m_2) \land R(m_1) = R(m_2) \land P(m_1) \neq P(m_2) \), we deem that there is a one-to-one rule in the form of \(m_1 \) replaced by \(m_2 \).

Finally, if there are still methods in \(M_S \) associated with no change rules, we deem them as simply-deleted. Similarly, if there are still methods in \(M_T \) associated with no change rules, we deem them as newly-added. It should be noted that, if a simply-deleted method \(m \) in class \(X \) actually overrides another method \(m' \) defined in a super class of \(X \), we adjust the rule for deleting \(m \) to a replacement rule (i.e., \(m \) replaced by \(m' \)), because the semantics of deleting \(m \) in object orientation is to direct calls of \(m \) to \(m' \).

C. Aggregating Change Rules

Supposing that we have \(n \) revisions (denoted as \(R_1, R_2, \ldots, R_n \), where \(R_1 \) and \(R_n \) are two releases) of the framework, and we have identified a set of change rules between each pair of consecutive revisions, we aggregate these change rules as follows. We aggregate rules for changing from \(R_1 \) to \(R_2 \) with rules for changing from \(R_2 \) to \(R_3 \) to obtain rules for changing from \(R_1 \) to \(R_3 \). We continue this aggregation process until we get rules for changing from \(R_1 \) to \(R_n \). For the ease of presentation, we focus on how we aggregate change rules between \(R_1 \) and \(R_2 \) with change rules between \(R_2 \) and \(R_3 \) below.

First, we deem either a rule for a newly-added method or a rule for a simply-deleted rule as a rule for method replacement. That is to say, a change rule is in the form of a set of methods (denoted \(S \)) in the predecessor revision replaced by a set of methods (denoted \(T \)) in the successor revision. If \(S \) is empty, the rule is a rule for newly-added methods. In such a case, we break the rule into several rules, each of which is about one newly-added method. If \(T \) is empty, the rule is a rule for simply-deleted methods. In such a case, we also break the rule into several rules, each of which is about one simply-deleted method. Thus, any change rule \(r \) is in the form of \(\text{Source}(r) \) replaced by \(\text{Target}(r) \).

Let us denote the set of rules for changing from \(R_1 \) to \(R_2 \) as \(RS_{1\rightarrow2} = \{a_1, a_2, \ldots, a_k\} \) and the set of rules for changing from \(R_2 \) to \(R_3 \) as \(RS_{2\rightarrow3} = \{b_1, b_2, \ldots, b_m\} \).

Second, we deem both change rules in \(RS_{1\rightarrow2} \) not related to any change rules in \(RS_{2\rightarrow3} \) and change rules in \(RS_{2\rightarrow3} \) not related to any change rules in \(RS_{1\rightarrow2} \) as rules for changing from \(R_1 \) to \(R_3 \). Change rule \(a \) in \(RS_{1\rightarrow2} \) and change rule \(b \) in \(RS_{2\rightarrow3} \) are related to each other (denoted as \(\text{Relate}(a, b) \)), if and only if \(\text{Target}(a) \cap \text{Source}(b) \neq \emptyset \).

Third, among the remaining related change rules in \(RS_{1\rightarrow2} \) and \(RS_{2\rightarrow3} \), we rewrite these change rules as follows. For such a rule (denoted as \(a \)) in \(RS_{1\rightarrow2} \), we calculate the set of rules that are transitively related to \(a \). Two rules (denoted as \(x \) and \(y \)) in \(RS_{1\rightarrow2} \cup RS_{2\rightarrow3} \) are transitively related to each other (denoted as \(\text{TransRelate}(x, y) \)), if and only if \(\forall c_1, c_2, \ldots, c_p \in RS_{1\rightarrow2} \cup RS_{2\rightarrow3}, \ (c_1 = x) \land (c_p = y) \land \text{Relate}(c_i, c_{i+1}) (1 \leq i < p) \). Supposing that the set of rules that are transitively related to \(a \) is \(RS'_{1\rightarrow2} \cup RS'_{2\rightarrow3} \) (where \(RS'_{1\rightarrow2} \subseteq RS_{1\rightarrow2} \) and \(RS'_{2\rightarrow3} \subseteq RS_{2\rightarrow3} \)), we have the following rule for changing from \(R_1 \) to \(R_3 \): \(\bigcup_{c \in RS'_{1\rightarrow2}} \text{Source}(c) \cup \bigcup_{c \in RS'_{2\rightarrow3}} \text{Source}(c) - \bigcup_{c \in RS'_{1\rightarrow2}} \text{Target}(c) \) replaced by \(\bigcup_{c \in RS'_{1\rightarrow2}} \text{Target}(c) \cup \bigcup_{c \in RS'_{2\rightarrow3}} \text{Source}(c) \). We continue to rewrite the remaining rules until we have rewritten all the change rules in \(RS_{1\rightarrow2} \cup RS_{2\rightarrow3} \).

Supposing that we have the rule of “A replaced by B1 and B2” for changing from revision \(R_1 \) to revision \(R_2 \) and the rule of “B2 and B3 replaced by C” for changing from revision \(R_2 \) to revision \(R_3 \), the preceding rule rewriting enables us to identify the rule of “A and B3 replaced by C” for changing from revision \(R_1 \) to revision \(R_3 \).

Fourth, we further resolve conflicts between change rules. In particular, we consider the following two cases of conflicts. The first case is a conflict between a rule for a simply-deleted method and a rule for a newly-added method. This conflict occurs when a method already deleted in \(R_2 \) is added back in \(R_3 \). For such a case, we drop both rules. The second case is a conflict between a rule for a simply-deleted method and a rule for method replacement. This conflict occurs when a method is replaced by another method in \(R_2 \) but still kept for backward compatibility, and the obsolete method is deleted in \(R_3 \). For such a case, we drop the rule for the simply-deleted method.

Finally, after we have obtained the change rules between
To evaluate our HiMa approach, we conducted an experimental study on HiMa. In our experimental study, we investigated the following two research questions.

- **RQ1**: How effective is our HiMa approach in comparison with existing approaches?
- **RQ2**: How do the four main techniques in our HiMa approach contribute to the overall effectiveness?

The first research question is concerned with whether HiMa is competitive with existing approaches to framework-evolution identification. The second research question is concerned with how the main techniques in HiMa impact the effectiveness of HiMa.

A. Experimental Design

As there exist quite a few approaches to framework-evolution identification, we compared our HiMa approach with AURA\(^6\) in our experimental study when investigating the effectiveness of HiMa. There are mainly two reasons for us to choose AURA for comparison. First, AURA is a state-of-art approach to framework-evolution identification and AURA provides several advanced features that previous approaches do not provide (please refer to our discussion in Section V). Second, Wu et al. [5] have empirically compared AURA with several existing approaches (i.e., M. Kim et al.’s approach [17], Schäfer et al.’s approach [7], and the SemDiff approach [21]) and demonstrated the competitiveness and even superioriness of AURA.

IV. EXPERIMENTAL STUDY

To evaluate our HiMa approach, we conducted an experimental study on HiMa. In our experimental study, we formed the following two tasks for framework-evolution identification: from release 4.1 to release 4.2 and from release 4.2 to release 4.3. Note that, to avoid basing our experiments in a scenario in favor of our approach, we did not use the task based on the first and the third releases for each subject. For example, based on jEdit, we used three open-source Java frameworks as subjects: Struts\(^7\), jEdit\(^8\), and Mime4J\(^9\). Struts is a framework for developing Java web applications; jEdit is a text editor with APIs for users to develop plug-ins; and Mime4J is a framework for developing applications that analyze email messages. The reasons for choosing these three Java frameworks are as follows. First, all the three subjects are frameworks of medium sizes, and thus it is feasible for us to manually inspect whether each identified rule is correct. Second, some of the subjects (e.g., jEdit and Struts) have been used in previous studies (e.g., M. Kim et al. [17], Schäfer et al.’s approach [7], and Wu et al. [5]), and thus it is helpful to compare our experimental results with theirs.

For each subject, we applied HiMa and AURA for two tasks involving three releases. That is to say, for each subject the first task is based on the first two releases and the second task is based on the last two releases. Thus, we are able to check whether the experimented approaches performed consistently on each subject. For example, based on jEdit, we formed the following two tasks for framework-evolution identification: from release 4.1 to release 4.2 and from release 4.2 to release 4.3. Note that, to avoid basing our experiments in a scenario in favor of our approach, we did not use the task based on the first and the third releases for each subject. Table I depicts the basic information of the three releases of each subject. For each subject, we applied HiMa and AURA for two tasks involving three releases. That is to say, for each subject the first task is based on the first two releases and the second task is based on the last two releases. Thus, we are able to check whether the experimented approaches performed consistently on each subject. For example, based on jEdit, we formed the following two tasks for framework-evolution identification: from release 4.1 to release 4.2 and from release 4.2 to release 4.3. Note that, to avoid basing our experiments in a scenario in favor of our approach, we did not use the task based on the first and the third releases for each subject. Table I depicts the basic information of the three releases of each subject.

For each subject and each task, either HiMa or AURA identified a set of evolution rules. As AURA identifies only four types of rules (i.e., simply-deleted, one-to-one, one-to-many, and many-to-one), we considered rules of only these four types in our experimental study. We adopted a way similar to Wu et al. [5] to determine the correctness of identified rules. That is to say, for each set of identified evolution rules, we manually inspected whether each rule in the set is correct with the help of framework documentation. In particular, the first and the second authors of this paper

5. opennlp.sourceforge.net/projects.html, accessed in March 2012

7. struts.apache.org, accessed in March 2012

8. www.jedit.org, accessed in March 2012

For each subject and each task, HiMa consistently achieves higher precision than AURA and as HiMa is able to always identify more correct evolution rules, HiMa also consistently achieves higher recall than AURA, although AURA also achieves competitive results. For example, for the first task on Mime4J, HiMa identifies 21 more correct rules and achieves ten percentage points higher in precision than AURA. Note that, as we do not know the exact number of correct evolution rules in total for each of the six tasks, we are not able to calculate the exact recall values for HiMa and AURA.

We further compare the overall effectiveness of HiMa and AURA in terms of each rule type in Table III. Similar to Table II, columns headed by “Idc.” depict the numbers of identified rules, columns headed by “Cor.” depict the numbers of correctly identified rules, and columns headed by “Pre.” depict the values of precision in percentage points. From Table III, we have the following observations.

First, the trend of overall effectiveness of HiMa and AURA in terms of each rule type is similar to the trend of overall effectiveness for all types. That is to say, HiMa achieves both precision and recall no less than AURA for all circumstances. This observation demonstrates HiMa’s consistent superioriess over AURA for each rule type. Furthermore, HiMa never achieves poor precision for any circumstances, while there are some circumstances for AURA to perform unsatisfactorily (e.g., the second task for AURA to identify one-to-one rules for Struts and the first task for AURA to identify rules of simply-deleted methods for Mime4J). It should be noted that there are 10 correct rules (i.e., 7 in the second task for jEdit and 3 in the first task for Mime4J) that HiMa and AURA identified as different types. The reason is that HiMa deems the deletion of an overridden method in a class as redirecting calls to a method in a superclass.

Second, neither HiMa nor AURA identifies many rules for one-to-many or many-to-one replacement. We suspect the reason to be that frameworks are not common to evolve with one-to-many or many-to-one replacement. However, identifying rules for one-to-many and many-to-one replacement may still be important, because migration tasks concerned with APIs involved in one-to-many and many-to-one replacement may be more difficult than other migration tasks.

Typically, there are some rules that can be identified by both HiMa and AURA. To analyze the relationships

Table III

OVERALL EFFECTIVENESS FOR DIFFERENT TYPES OF RULES

<table>
<thead>
<tr>
<th>Framework&Task</th>
<th>Simply-Deleted</th>
<th>One-to-One</th>
<th>One-to-Many</th>
<th>Many-to-One</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HiMa</td>
<td>AURA</td>
<td>HiMa</td>
<td>AURA</td>
</tr>
<tr>
<td>jEdit&Task1</td>
<td>206</td>
<td>192</td>
<td>93.2</td>
<td>126</td>
</tr>
<tr>
<td>jEdit&Task2</td>
<td>169</td>
<td>157</td>
<td>92.9</td>
<td>148</td>
</tr>
<tr>
<td>Struts&Task1</td>
<td>76</td>
<td>76</td>
<td>100.0</td>
<td>77</td>
</tr>
<tr>
<td>Struts&Task2</td>
<td>66</td>
<td>66</td>
<td>100.0</td>
<td>50</td>
</tr>
<tr>
<td>Mime4J&Task1</td>
<td>17</td>
<td>16</td>
<td>94.1</td>
<td>14</td>
</tr>
<tr>
<td>Mime4J&Task2</td>
<td>15</td>
<td>15</td>
<td>100.0</td>
<td>8</td>
</tr>
</tbody>
</table>

Table IV

DETAILED COMPARISON OF IDENTIFIED RULES

<table>
<thead>
<tr>
<th>Framework&Task</th>
<th>HiMa&HiMa</th>
<th>AURA Only</th>
<th>HiMa Only</th>
<th>AURA Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>jEdit&Task1</td>
<td>310</td>
<td>307</td>
<td>122</td>
<td>109</td>
</tr>
<tr>
<td>jEdit&Task2</td>
<td>870</td>
<td>869</td>
<td>187</td>
<td>174</td>
</tr>
<tr>
<td>Struts&Task1</td>
<td>177</td>
<td>176</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Struts&Task2</td>
<td>68</td>
<td>66</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Mime4J&Task1</td>
<td>187</td>
<td>184</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Mime4J&Task2</td>
<td>87</td>
<td>87</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Together with another two students (not authors of this paper) participated in the manual inspection, and we ensured that each identified rule was inspected by at least two inspectors. In case of conflicts, all the related inspectors discussed face to face to resolve the conflicts. In our manual inspection, we payed special attention to the rules identified by only HiMa and the rules identified by only AURA, because human errors made on determining the correctness of such rules would affect HiMa and AURA differently. We put the detailed information of the identified rules on our project website.\(^{10}\)

As our HiMa approach contains several techniques, to investigate how the main techniques in HiMa contribute to its overall effectiveness, we further experimentally compared five combinations of the main techniques in HiMa. That is to say, besides HiMa itself, we also experimented with another four combinations, each turning off one technical component. Similar to the experimental comparison between HiMa and AURA, we manually inspected the correctness of each identified rule and put the detailed information on our project website.

We also recorded the execution time for each HiMa or AURA to perform each task on each subject. All the execution time is based on executing HiMa and AURA on Windows 7 with an Intel Core i5 2.53GHz CPU and 6GB memory. We used the execution time of HiMa and AURA as an indicator for their performance.

B. Results and Analysis

1) RQ1: Overall Effectiveness: Table II depicts the overall effectiveness of HiMa and AURA. In this table, columns 2-4 depict the number of rules identified by HiMa, the number of correct rules identified by HiMa, and the precision of HiMa in percentage points for each subject and each task. Similar to columns 2-4, columns 5-7 depict these numbers for AURA. From Table II, we have the following observation.

\(^{10}\)sourceforge.net/projects/hima
between rules identified by HiMa and rules identified by AURA, we further provide a detailed comparison of rules identified by HiMa and AURA in Table IV. In this table, for each subject and each task, columns 2-3 depict the number of rules identified by both HiMa and AURA, and the number of correct rules among them; columns 4-7 depict the information for rules identified by only HiMa but not AURA and rules identified by only AURA but not HiMa. Here, we deem the 10 correct rules that HiMa and AURA classified into different types as correctly identified by both HiMa and AURA. From Table IV, we have the following observations.

First, the majority of correct rules can actually be identified by both HiMa and AURA. This observation thus confirms the effectiveness of both approaches. Second, very few correct rules are identified by AURA but not by HiMa, while there are quite some correct rules identified by HiMa but not by AURA. This observation indicates that, although HiMa and AURA can complement each other in practice, HiMa should be preferred if only one approach can be used.

2) RQ2: Contributions of the Four Main Techniques: To compare the five combinations of the four main techniques in our HiMa approach, each column in Table V depicts the results of one combination. For example, “Without Comment” denotes HiMa without using comment analysis and “HiMa (ALL)” denotes HiMa itself. From Table V, we have the following observation concerning the contributions of the main techniques in our HiMa approach.

HiMa without using either comment analysis, callee analysis, caller analysis, or mapping conditions would typically identify fewer evolution rules that can be correctly identified by HiMa using all the techniques in some circumstances. This observation indicates that all of the techniques in HiMa are useful. Furthermore, as turning off any of the four techniques in HiMa may not always result in significant decrease in the number of correctly identified evolution rules, the effects of the four techniques may somehow overlap with each other for a specific framework.

It should be noted that the need for using all the four techniques in HiMa actually lies in the way for HiMa to use them. As HiMa uses all the four techniques to match each pair of consecutive revisions, slight loss in accuracy induced in matching some pair of revisions may affect the overall effectiveness. Thus, it is preferable for us to employ multiple techniques to identify as many correct rules as possible for each pair of revisions. Supposing that we have one rule for changing revision R_1 to revision R_2 in the form of “method A replaced by method B” and one rule for changing revision R_2 to revision R_3 in the form of “method B replaced by method C”, failure to identify either of the two rules would result in failure to identify the rule “method A replaced by method C” for changing revision R_1 to revision R_3.

C. Performance

Table VI lists the execution time of HiMa and AURA for the six tasks. Columns headed by “#Rev.” depict the numbers of pairs of revisions used by HiMa. From this table, we can observe that the execution time of HiMa is always much longer than that of AURA. In particular, HiMa is typically 100-150 times more costly than AURA computationally. We suspect the reason to be that HiMa needs to analyze too much more revisions than AURA. For example, for the first task on jEdit, HiMa analyzed 586 pairs of revisions while AURA analyzed only one pair of revisions. As the aim of framework-evolution identification is to facilitate the migration of client code and one framework may have a large number of clients, the extra computational cost of HiMa would not be a big burden for its application. Furthermore, as the execution time of HiMa may be more sensitive to the number of revisions, HiMa may not be significantly less scalable than AURA in response to the increase of the framework size. Of course, more experiments on large frameworks are necessary to further investigate HiMa’s scalability.

D. Threats to Validity

1) Construct Validity: Threats to construct validity are concerned with whether the measurement in the study reflects real-world situations. The main threat to construct validity in our study is the way of validating identified rules. As we adopted a manual process to check whether each identified rule to be correct, errors made in this manual process would bias our experimental results. To reduce this threat, four human inspectors carefully determined the correctness of the identified rules ensuring each rule inspected by at least two inspectors. Note that existing studies (e.g., M. Kim et
al. [17], Schäfer et al. [7], and Wu et al. [5]) typically adopt manual inspection of identified rules to evaluate approaches to framework-evolution identification.

2) Internal Validity: Threats to internal validity are concerned with the uncontrollable factors that may also be responsible for the experimental results. In our study, the main threat to internal validity is the possible faults in the implementation of our approach. To reduce this threat, we reviewed all the code before conducting the study.

3) External Validity: Threats to external validity are concerned with whether the experimental results are generalizable for other situations. In our study, the main threat to external validity lies in the representativeness of our subjects. To reduce this threat, we chose three subjects (including two subjects used in previous research [17], [5]). However, as we experimented with frameworks written in only Java using only SVN as the version-control system, our experimental results may be specific to Java and SVN. Further reduction of this threat may require evaluation of our approach on frameworks written in other languages using other version-control systems. Note that our approach requires the version-control system to support locating each framework revision.

V. DISCUSSION

In this section, we discuss the following issues related to our
HiMa approach: the strength and weakness of using revisions and comments, the ability to identify plentiful types of rules, the ability to avoid thresholds, and the need to assist client migration.

Use of revisions and comments. The main strength of using revisions is that the differences between two consecutive revisions are much smaller than the differences between two releases. Thus, rule identification between two consecutive revisions could be more accurate than rule identification between two releases. The main strength of using comments is that the information in comments is orthogonal to information in source code. Thus, conceding NLP’s inaccuracy, we are able to use source code of revisions to validate and refine raw rules identified from comments. The main weakness of using revisions and comments is that the abundance of information may incur too much computational cost to use deep code analysis. However, our empirical results indicate that shallow analysis on abundance of information may still be superior to deep analysis on scarceness of information.

Automatic identification of plentiful types of rules. In the literature, researchers (e.g., Wu et al. [5]) have demonstrated that it is necessary to automatically identify the four types (i.e., simply-deleted, one-to-one, one-to-many, and many-to-one) of evolution rules. In fact, AURA is the first approach that satisfies this requirement. Our HiMa approach is able to not only satisfy this requirement but also outperform AURA for each type of rules. In fact, HiMa can also identify many-to-many rules, which AURA cannot identify.

Avoiding threshold tuning. According to Wu et al. [5], not using thresholds is also a key feature of approaches to framework-evolution identification, because the use of thresholds implies tedious tuning for different contexts. Among all the existing automatic matching-based approaches, AURA is the only approach that does not use any threshold. In particular, AURA employs a procedure to calculate the confidence of each identified rule and keeps only rules with 100% confidence. Unlike AURA, as differences between two consecutive revisions are very small, HiMa is able to naturally avoid using any threshold by just keeping rules that satisfy our strict criteria.

Assisting client migration. It should be noted that the final goal of framework-evolution identification is to automate the migration of client code. To achieve this goal, it is necessary to further identify framework-evolution-related usage patterns. In fact, Zhong et al. [34] and Nyuyen et al. [14] have investigated techniques that may help obtain such patterns.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach named HiMa to identification of framework evolution. The distinctive feature of our HiMa approach is to match each pair of consecutive revisions in the evolution history of the framework and aggregate revision-level rules to form evolution rules between the two releases. To evaluate our HiMa approach, we empirically compared HiMa with AURA using three Java frameworks as subjects. Our empirical results indicate that, for both precision and recall, HiMa is superior to AURA in most circumstances and is never inferior to AURA in any circumstances. Due to the use of a large number of revisions, HiMa is computationally more costly than AURA. However, the higher cost in computation would not be an inhibitive factor for the application of HiMa.

In future work, we plan to investigate the following issues. First, we plan to implement HiMa for other languages and other version-control systems, and conduct further experiments to address the main threats to the validity of our experimental study. Second, as client code provides a source of information not utilized in our approach, we plan to incorporate analysis of client code into our approach to further improve the accuracy of our approach. Finally, we plan to further investigate optimization of the matching between each pair of revisions so as to incorporate deeper analysis for higher accuracy.

ACKNOWLEDGMENTS

This research is sponsored by the National 973 Program of China No. 2009CBB320703 and the Science Fund for Creative Research Groups of China No. 61121063. We thank the authors of AURA for providing their implementation of AURA publicly. We thank Mr. Chun Zhang for his valuable suggestions for this research, and Mr. Tian Lan and Mr. Muyao Zhu for their assistance in our empirical evaluation.
REFERENCES

