
Locating Semantically Similar Code Elements via
Searching the System Dependence Graph

Xiaoyin Wang1, David Lo2, Jiefeng Cheng3, Lu Zhang1, Hong Mei1, Jeffrey Xu Yu3

1Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, Beijing, 100871, China

2School of Information Systems, Singapore Management University
3The Chinese University of Hong Kong, China

{wangxy06,zhanglu,meih}@sei.pku.edu.cn, davidlo@smu.edu.sg, {jfcheng,yu}@se.cuhk.edu.hk

ABSTRACT
In software maintenance and evolution, it is common that develop-
ers want to apply a change to a number of similar places. Due to
the size and complexity of the code base, it is challenging for de-
velopers to locate all the places that need the change. Therefore,
techniques that can help developers achieve this purpose should
be necessary. In this paper, we propose a technique that enables
developers to search for semantically similar code elements sat-
isfying user-defined dependence constraints. Our approach allows
developers to make queries involving dependence relationships and
textual conditions on the system dependence graph of the program.
We carried out an empirical evaluation on four searching tasks in
the development history of two real-world projects. The results of
our evaluation demonstrate that, compared with code-clone detec-
tion and text search, our approach is able to effectively reduce false
positives without losing any required code elements.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and En-
hancement

General Terms
Management, Reliability

Keywords
System Dependence Graph, Code Search, Graph Indexing

1. INTRODUCTION
In software development, developers often need to apply one

change to a number of similar places in the code. Such a situa-
tion occurs typically when developers want to make a programming
style change or want to change the environment (e.g., the database
system, the operation system, and the user interface) of the soft-
ware. For example, when a developer wants to extract a common
code pattern to form a new method, he or she should try to locate
all the instances of the code pattern and change them to invocations
of the new method.

It is usually easy for a developer to locate one or a few places for
change, but it is challenging for he or she to locate all the similar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’10, September 20-24 2010, Antwerp, Belgium
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

places that require the same change. Since the code base of a mod-
ern software application is large and usually many developers may
have been coding for the application, it may be infeasible for the
developer to remember all the similar places without missing any
one. Thus, a tool that helps developers locate all the similar places
requiring the same change may save much development time.

One possible way to achieve the preceding purpose is to use tech-
niques for code-clone detection. Techniques for code-clone detec-
tion are able to detect all the code segments that are similar to the
known places that need change. However, techniques for code-
clone detection rely on a pre-defined uniform similarity metric to
measure the similarity between two code segments. But the sim-
ilarity in the preceding problem is actually some common char-
acteristics that similar code elements should have, and a different
change may imply different common characteristics. For instance,
as shown in the first example in Section 2, the two code elements
are “similar” for only the change at hand, but should not be similar
in any technique for code-clone detection.

Another possible way to achieve the preceding purpose is to use
text search. In a typical text-search tool, a developer can represent
the common characteristics as a regular expression and search in
the code for matched code elements. However, text-search tools
cannot always represent common semantic characteristics as reg-
ular expressions. For instance, as shown in the second example
in Section 2, the common semantic characteristics of the need-to-
change code elements are based on control and data dependence
relationships, and cannot be represented as a regular expression.

In this paper, we propose a novel approach to locating seman-
tically similar code elements in source code. The basic idea of
our approach is as follows. When a developer wants to search for
places requiring the same change in the source code, our approach
allows him or her to summarize common semantic characteristics
of the known places requiring the change and write a query using
a language named the Dependence Query Language (DQL) (pre-
sented in Section 4.1) to describe the common semantic charac-
teristics. Then, our approach transforms the query into a series of
graph patterns and matches the graph patterns in the System De-
pendence Graph (SDG) of the source code using a fast algorithm
for graph-pattern matching [3]. We empirically evaluated our ap-
proach using four searching tasks in two real-world projects. Our
empirical results demonstrate that our approach is more effective
than both code-clone detection and text search for these searching
tasks.

This paper makes the following main contributions:

• A demonstration of challenges in locating semantically sim-
ilar code elements in source code.

• A query language (i.e., DQL) that allows developers to de-

scribe common semantic characteristics involving multiple
program points and dependence relationships between the
program points.

• A search technique that allows developers to locate code el-
ements sharing the same semantic characteristics via graph
matching.

• An empirical evaluation demonstrating the effectiveness and
the cost of our approach.

We organize the remaining of this paper as follows. In Section 2,
we present examples to motivate our approach. In Section 3, we
present some background knowledge used in our approach. In Sec-
tion 4, we present technical details of our approach. In Section 5,
we present further optimization of our approach. In Section 6, we
report an empirical evaluation of our approach. We discuss related
work in Section 7. We conclude this paper with some pointers to
future work in Section 8.

2. EXAMPLES
In this section, we present two examples to demonstrate the chal-

lenges in locating semantically similar code elements. The first ex-
ample comes from code changes made to the expat1 project (cvs
version 2002-05-17). In the code changes, the developers want to
fix some memory leaks that may happen when a call of the malloc
function fails. One of the changes made to the code is as below.

Original Code:
tag = MALLOC(sizeof(TAG));
if (!tag)

return XML_ERROR_NO_MEMORY;
tag->buf = MALLOC(INIT_TAG_BUF_SIZE);
if (!tag->buf)

return XML_ERROR_NO_MEMORY;

Cahnged Code:
tag = MALLOC(sizeof(TAG));
if (!tag)

return XML_ERROR_NO_MEMORY;
tag->buf = MALLOC(INIT_TAG_BUF_SIZE);
if (!tag->buf){

Free(tag);
return XML_ERROR_NO_MEMORY;

}

From the preceding two code portions, we can see that the de-
velopers want to find cases where a field (i.e., tag->buf in the
code) of a struct variable (i.e., tag in the code) is initialized after
the struct variable is initialized. The aim is to add a free function
when the initialization of the field is failed so that memory leak
can be avoided. The key characteristic is two calls of the malloc

function: One call is to acquire memory for the entire struct vari-
able and the other call is to acquire memory for a filed of the struct
variable. As the name of the struct variable and the name of the
field may vary in other places, it is difficult to find these places
with code-clone detection. Furthermore, as it is impossible to ex-
press the constraint between the struct variable and the field in text
search, we cannot use this constraint to confine the search. Actu-
ally, another instance of this kind of memory leak is as below.

newE = (ELEMENT_TYPE *)lookup(&(newDtd->elementTypes),
name, sizeof(ELEMENT_TYPE));

if (!newE)
return 0;

if (oldE->nDefaultAtts) {
newE->defaultAtts = (DEFAULT_ATTRIBUTE *)

MALLOC(oldE->nDefaultAtts * sizeof(DEFAULT_ATTRIBUTE));
if (!newE->defaultAtts)

return 0;
}

1The expat project is a popular XML document handling library
written in C.

In the preceding code portion, the name of the struct variable
is newE and the name of the filed is newE->defaultAtts. Fur-
thermore, this code portion only depicts one call of the malloc

function, and the other call of the malloc function is inside the im-
plementation of the lookup function. To make the situation even
worse, there is an extra if -structure (i.e., if(oldE->nDefaultAtts))
in this code portion. This example demonstrates that neither code-
clone detection nor text search allows developers to express some
important constraints when locating semantically similar code ele-
ments.

The second example is from code changes in the gpsbabel project
(cvs version 2004-10-27). In these changes, the developers try to
find copying operations between two arrays of the UC type in the
form of a loop. The aim is to replace each such copying operation
with a call of a specially defined function (i.e., arraycopy). The
following two code portions depict the code before and after such
a change. The code in the italicized parts highlight the change.

Original code:
UC* p, str;
...
for(i = 0; i < 10; i++){

str[i] = *p++;
}

Changed code:
UC* p, str;
...
arraycopy(str,p,10);

The key characteristic is a series of assignments between ele-
ments in two arrays and each element is of type UC. In this example,
the main challenge is to express both the following constraints: 1)
the constraint between the loop structure and the content inside the
loop structure, and 2) the constraint on the type of the elements in
the two arrays. Neither code-clone detection nor text search allows
developers to express both constraints in one search.

From the preceding two examples, we have the following obser-
vations. First, when locating semantically similar code elements,
developers may need to express searching conditions as combina-
tions of constraints of various kinds. Code-clone detection may
be inappropriate, since code elements satisfying such a searching
condition may not look similar at all. Text search may also be inap-
propriate, since such a search condition typically contains semantic
properties besides textual properties. Second, semantic properties
described in such a search condition typically include both control
dependencies and data dependencies.

Based on the preceding observations, we propose a new approach
to locating semantically similar code elements in source code. Our
approach allows developers to expression combinations of textual
conditions, data dependence conditions, and control dependence
conditions in the individual queries. To deal with the dependence
conditions, our approach searches matched instances in the System
Dependence Graph (SDG) of the source code.

3. BACKGROUND

3.1 System Dependence Graph
The system dependence graph (SDG) is a graph that describes

the dependence relationships between program points in the source
code. In an SDG generated by CodeSurfer2, each node corresponds
to a program point in the code. Each program point represents a
piece of code. There are 33 types of program points in total in
2CodeSurfer is static program analyzer and it can extract a system
dependence graph from source code. CodeSurfer can be obtained
from http://www.grammatech.com/products/codesurfer.

Figure 1: An example system dependence graph

Figure 2: Example Graph and Query

an SDG generated by CodeSurfer. The edges in an SDG corre-
spond to the dependence relationships between code pieces. There
are two kinds of dependence relationships: data dependence re-
lationships and control dependence relationships. Table 1 depicts
the most commonly used types of program points in SDGs. In
our current approach, we only consider searching for the structures
consisting of program points of these most commonly used types.
However, it is possible to extend our approach to search for other
program points by extending our dependence query language (See
Section 4.1) and the query transformation rules (See Section 4.3).
Note that program points of other types may be intermediate nodes
transiting dependence in the graph between program points of the
most commonly used types.

Given a C program, CodeSurfer can extract an SDG automati-
cally along with the compilation of the program. For example, for
the following program, CodeSurfer can provide an SDG in Fig-
ure 1. In the figure, each node is labeled with its program-point
type, and we also provide the textual representation of each node.
Hollow arrows refer to data dependence and solid arrows refer to
control dependence. Solid lines refer to intra-procedure depen-
dence and dotted lines refer to inter-procedure dependence.

static int add(int a, int b){
return a + b;

}
/* Sum 0 through 10. */
void main() {

int sum, i;
sum = 0;
i = 1;
while (i<11) {

Table 1: Commonly used types of program points
Program Point Type Description

expression value assignment or value return
control point any kind of branch condition

(e.g., if, for, while, ...)
call site function invocation
actual in actual argument in a function invocation

actual out returned value of a function invocation
declaration declaration of a variable

entry entry of a function

sum = add(sum, i);
i = add(i, 1);

}
}

3.2 Graph Reachablity Indexing and
Querying

Graph reachability indexing and querying is a research topic in
the area of graph databases [3]. A graph reachablity indexing algo-
rithm takes a labeled directed graph as its input. In a labeled graph,
each node has one and only one label from a known label set. The
algorithm indexes all the reachability relationships between node
labels. With the indices of a graph, one can query and obtain all the
instances of a reachability pattern (represented as a query graph).
For example, for the graph in Figure 2(a) with a label set {A, B, C,
D, E, F}, a query in Figure 2(b) can be made. To distinguish nodes
labeled with the same label, in Figure 2(a), we add numbers to the
end of the label. For example, A1, A2, and A3 are three nodes la-
beled with A. The query in Figure 2(b) denotes sub-graphs having
the following conditions: First, in such a sub-graph, there is at least
one node labeled with A, one node labeled with B, and one node
labeled with F. Second, in such a sub-graph, it is reachable from the
node labeled with A to either the node labeled with B or the node
labeled with F. Note that edges between nodes in the query graph
represent reachability relations instead of immediate connections.
The three matched instances (A1, B2, F1; A2, B2, F1; A3, B1, F2)
are marked with triangles, squares, and stars, respectively.

4. APPROACH
To help developers locate semantically similar code elements, we

design a language, named the dependence query language (DQL),
for developers to describe the common characteristics of target code
elements. Section 4.1 presents the details of DQL. With a query
written in DQL, our approach searches for code elements that sat-
isfy the common characteristics described in the query using the
following four steps. First, we extract the System Dependence
Graph (SDG) from the source code using CodeSurfer. Second, we
transform the dependence relationships in the query to a series of
graph patterns. Third, we search in the SDG to locate sub-graphs
matching the graph patterns. Finally, we use the textual constraints
in the query to filter the located sub-graphs and trace back to code
elements in the source code. Sections 4.2 to 4.5 presents the details
of the preceding four steps, respectively.

4.1 Dependence Query Language
A query in our Dependence Query Language has four parts, for-

mally presented as below.

Query → QueryDeclaration ; NodeDescriptions ;
RelationDescriptions ; Wanted

The QueryDeclaration part is formally defined below.
QueryDeclaration → QueryDeclaration , NodeDeclaration

| NodeDeclaration
NodeDeclaration → Types Identifier

Identifier → [A-Z]
Types → Types / Type | Type
Type → function | variable | assignment

| declaration | control-point

This part allows a developer to declare a list of program points
involved in the search. Besides an identifier, the developer must
give each program point one or more types. If one program point
has more than one type, the meaning is to declare a program point
whose actual type is one of the types. DQL supports five types of
program points: function, variable, assignment, declaration, and
control-point. These five types are abstraction of the types of pro-
gram points in SDG. We describe the mapping between types in
DQL and types in SDG in Section 4.3. The function type refers
to any invocations of functions. The variable type refers to single
variables. The assignment type refers to assignments or returns
of invocations passing the return values3. The declaration type
refers to declarations of variables. As a typical system program
dependence graph (e.g., the SDG produced by CodeSurfer) does
not represent function declarations as program points, our DQL
also does not consider program points representing function dec-
larations. The control-point type refers to all branch conditions.

The NodeDescriptions part is formally defined as below.

NodeDescriptions → NodeDescriptions NodeDescription
| NodeDescription

NodeDescription → Identifier Conditions
Conditions → Conditions or Condition | Condition
Condition → not UnitCondition | UnitCondition
UnitCondition → contains String
UnitCondition → declareType String
UnitCondition → declareType Native
UnitCondition → controlType CTYPE
CTYPE → for | while | switch | if

In the preceding definition, “String” refers to a character se-
quence inside quotation marks, “Native” refers to the set of built-in
types of the C language, including “char”, “float”, “int”, and “dou-
ble” etc.

This part allows a developer to describe the properties related
to a single program point. For each program point, a developer
can add two kinds of properties as conditions. First, a developer
can use contains to demand the textual representation of a program
point to have a particular substring. Second, for certain types of
program points, a developer can also describe the declared type or
the control type of a given program point. A developer can also add
not or or to the conditions for a program point. Note that our DQL
does not support the disjunction of conditions of different program
points. In such a case, a developer needs to generate more than one
queries.

The RelationDescriptions part is formally defined as below.

RelationDescriptions → RelationDescriptions ,
RelationDescription | RelationDescription

RelationDescription → Identifier op Identifier
op → dependOp | textualOp | structuralOp
dependOp → oneStep subDependOp
subDependOp → dataDepends | controls | calls
textualOp → textual contains
structuralOp → isFieldOf
structuralOp → isElementOf

This part allows a developer to describe three kinds of depen-
dence relationships between program points: dataDepends, con-
trols and calls. Specifically, “A dataDepends B” refers to that A
is data dependent on B; “A controls B” refers to that B is control
dependent on A; and “A calls B” refers to that there is a chain of

3We merge these two kinds of elements for simplicity, the devel-
oper can easily demanding an assignment to be or not be a return
statement using a textual condition.

function invocations from A to B. A developer can also use mod-
ifier oneStep before a relationship to demand that the dependence
must happen in one step in the SDG.

Our DQL also allow a developer to add textual conditions be-
tween the textual representations of two program points. Specifi-
cally, “A textual contains B” refers to that the textual representation
of B is a substring of the textual representation of A.

Sometimes program points may have structural relationships, such
as the relationship between a struct variable and its fields or the re-
lationship between an array variable and tis elements. So our DQL
also allow a developer add structural conditions. In particular, “A
isFieldOf B” refers to that A is a field of struct variable B, and
“A isElementOf B” refers to that A is an element of array variable
A. For example, “a.b isFieldOf a” holds and “a[b] isElementOf a”
holds.

The Wanted part is formally defined as below.
Wanted → want Identifiers
Identifiers → Identifiers , Identifier | Identifier

This part allows a developer to indicate which program points
in the query are the actual target. For example, in the second ex-
ample in Section 2, since the target of the developer is only the
for/while loops that iteratively assign values to an array of type UC,
the developer can set only the program points corresponding to the
for/while control-point as the wanted program point. In particular,
a query for this example is as the following query:

declaration A, control-point B, assignment C; A declareType UC*,
B controlType for or controlType while; B controls C, C oneStep
dataDepends A; want B

In the preceding query, A, B and C correspond to three program
points in the example. A should be a variable declaration and the
type of the variable is “UC*”, and the node B should be a loop and
its control type is “for” or “while”. The dependence between C and
A is one step because A should directly declares C. B is wanted
because the developer wants to locate only the for/while loops.

4.2 SDG Extraction
In our approach, we obtain the system dependence graph (SDG)

as follows. First, we use CodeSurfer to generate an initial SDG
from the code. Second, we check each node to see whether the
node is a program point of one of the types listed in Table 1. For
each such node, we extract its type (e.g., actual-in, call-site, etc.),
textual presentation, and location in the code, and label the node
with its type. For other nodes, we also label each node with its
type but do not extract any information. We keep these nodes in
the SDG to transit dependence relationships between nodes of the
most commonly used types. Third, we extract all the edges between
nodes and label them as control dependence or data dependence.
Here we do not differentiate inter-procedure dependence and intra-
procedure dependence, since the developer usually does not know
whether the target he/she is searching for is in a function or scat-
tered in different functions. Fourth, we give each node in the SDG
a unique number as its identification.

4.3 Query Transformation
To use graph reachability querying to search in the SDG, we need

to transform a query described in DQL into one or more queries for
graph reachability querying. First, as graph reachability querying
accept only query graphs, we need to transform queries in DQL
into query graphs. Second, as a query graph in graph querying al-
lows only the conjunction of label conditions and reachability con-
ditions, we need to split a query with disjunctions of conditions
in DQL into several query graphs. Third, for conditions (such as
textual conditions, program-point properties described in the Nod-
eDescriptions part, and the oneStep conditions) supported by DQL

Figure 3: Rules for dependence relation descriptions

by not supported by graph reachability querying, we do not trans-
form them into query graphs but use them to filter the results of
graph reachability querying. We present the details of filtering in
Section 4.5.

4.3.1 Splitting Queries
In a query written in DQL, there are two places that may contain

disjunctions of conditions, and the conditions in both places are
conditions for single program points. The first place is the Query-
Declaration part, where a program point may have multiple possi-
ble types. The second place is the NodeDescriptions part, where
the properties of a program point may be the disjunction of several
conditions. To deal with the disjunctions of conditions, we split the
query into the disjunction of a series of sub-queries, each of which
contains only conjunctions of conditions. This process is similar to
the process of normalizing a logic expression into the disjunctive
normal form. When querying the SDL, we use each conjunctive
sub-query to obtain a set of results and use the union of all the re-
sult sets as the results of the original query.

For example, for the query described as “function / control-point
A, variable B; A contains "abc" or contains "de"; A dataDepends
B; want A”, we can split the query into the following four sub-
queries: “function A, variable B; A contains "abc"; A dataDepends
B; want A”, “control-point A, variable B; A contains "abc"; A
dataDepends B; want A”, “function A, variable B; A contains "de";
A dataDepends B; want A”, and “control-point A, variable B; A
contains "de"; A dataDepends B; want A”. None of the sub-queries
includes any disjunctions of conditions.

4.3.2 Transforming Conjunctive Queries
For a query containing only conjunctions of conditions, we trans-

form the query into a query graph in the following way. First, we

transform each program point in the QueryDeclaration part into
a node in the query graph. Second, we do not consider the condi-
tions for filtering (e.g., properties described in the NodeDescrip-
tions part) in query transformation. Third, we transform the type
of each program point into the label of the corresponding node,
and the relationships between program points into edges between
nodes. Note that there is no straightforward one-to-one mapping
between the types of program points in DQL and the types in the
SDG and there is no straightforward one-to-one mapping between
the relationships in DQL and the relationships in the SDG. In the
following, we present the details of transforming program-point
types and relationships between program points.

Figure 3 depicts the rules for the preceding transformation. Each
rule refers to the transformation of two program points (including
their types) and their relationship described in DQL into the corre-
sponding sub-graph (including node labels) in the query graph. In
the figure, hollow arrows denote data dependence and solid arrows
denote control dependence. Note that some rules result in adding
extra nodes into the query graph.

For brevity, in Figure 3, we merge rules when the relationship in
DQL is the same and the structure of the transformed sub-graph is
similar. As a result, we have four generic rules in Figure 3, and in
each generic rule, a program point in DQL may have more than one
type and a node in the transformed sub-graph may have more than
one label. In such a case, we use a “|” to separate the program-point
types and the node labels. The details of the four generic rules are
as below.

• A calls B. According to the SDG generated by CodeSurfer,
such a situation requires that B should be control dependent
on the entry of A and the entry of A should be control depen-
dent on the call-site of A. So we add two control dependence
edges and an intermediate entry node from A to B (3(a)).
Both A and B should be functions. The newly added node
should have an identifier not used by other nodes, and we
use Ai to indicate that it is the ith added node.

• A controls B. We transform this relationship to a control de-
pendence edge from A to B (Figure 3(b)). A should be a
control-point, and B can be an assignment, a function call or
another control-point. Furthermore, if B is a function call,
we need to transform the function type into the call-site la-
bel. As neither declarations nor references of variables are
executable, we do not allow B to be a declaration or a vari-
able. We transform the assignment type into the expression
label because the SDG generated by CodeSurfer uses an ex-
pression to represent an assignment.

• A dataDepends B and A is not a function. We transform
this relationship to a data dependence edge from B to A (Fig-
ure 3(c)). A can be a control-point, an assignment or a vari-
able. As a declaration cannot be data dependent on anything,
we do not allow the type of A to be declaration. B can be
of any types except for control-point (CodeSurfer treats an
assignment like “x = a>b” as an expression rather than a
control point). Two things need further explanation in Fig-
ure 3(c). First, when one program point is data dependent
on another program point of the function type, the label for
the node corresponding to the program point of the function
type should be actual-out. This is because in the SDG gener-
ated by CodeSurfer, data dependence to a function is denoted
as data dependence to the actual-out corresponding to the
function call. Note that the dependence between an call-site
program point and its corresponding actual-out is a control

Figure 4: An example query graph

dependence. Second, we transform variable into expression
because the SDG generated by CodeSurfer uses an expres-
sion to represent an variable.

• A dataDepends B and A is a function. In this case, one of
the A’s actual argument should be data dependent on another
program point. Furthermore, the dependencies between a
call-site and its corresponding actual arguments are control
dependencies. So we have the the rule as in Figure 3(d).

Since program points of the function type may be transformed
into nodes with different labels in different rules. Graph node may
have conflicting labels. The possible conflicting labels are call-site
and actual-out. In such a case, we split the node to two, and add a
control dependence edge from the call-site node to the actual-out
node.

If no rule in Figure 3 is able to transform a dependence rela-
tionship described in a query, we deem that there is an error in the
query. For example, if A is declared as a function and B is de-
clared as a control-point, the dependence relationship described as
“A calls B” will result in an error.

As an example, we show the query graph of the query example
at the end of Section 4.1 after transformation in Figure 4.

4.4 Graph Querying
As graph reachability indexing and querying requires only one

type of edges in both the query graph and the graph for indexing, we
cannot use the query graphs to query the SDG. To enable the query,
we divide either the query graph or the SDG to two partial graphs.
In each partial graph, the nodes are the same with the original graph
but we keep only one kind of edges. Thus, after the two partial SDG
graphs are indexed, we perform two queries using two partial query
graphs on their corresponding partial SDGs.

After we obtain the two lists of results, we need to concatenate
the results. We mark a list of split nodes in the query graph when
doing the graph division. A split node is a node that has related
edges in both partial query graphs. For each result R1 in the list of
results for the control dependence query and each result R2 in the
list of results for the data dependence query, we check whether we
can merge all the split nodes4. If all the split nodes can be merged,
we merge the two results and put the merged result into the list of
final results.

4.5 Result Filtering and Generation
After we obtain the results of graph querying, we further use the

conditions that are in the original conjunctive query but not trans-
formed into the query graph to filter the results. For each result,
we check three categories of conditions. First, we check each node
with its corresponding program point in the query. If any property
of the program point is not satisfied, we remove the result from the
result set. Note that when checking textual presentation of nodes
which are labeled as expression from a variable element. We only
use the variable part (e.g., we use only “a” of “a = 0;”). Second,
we verify the textual and structural conditions between program

4Two nodes in two results can be merged if the two nodes corre-
spond to a same node in the original SDG graph.

points. That is to say, if any two program points do not satisfy any
conditions described for them, we remove the result from the re-
sult set. Third, we verify the oneStep conditions between program
points. We examine whether the dependence relationship between
two program points is one step by verifying whether there is an cor-
responding (control or data) edge between the two corresponding
nodes in the SDG. For the calls relationships, as such a relationship
is transformed to multiple edges in the query graph, we examine
whether all these edges are one step.

Finally, as a result after filtering may contain several program
points, we recommend the developer with only the program points
corresponding to the wanted part. Furthermore, if the developer
wants to examine the reason of our recommendation, we allows
the developer to further expand the result and see all the involved
program points.

5. OPTIMIZATION
In our approach described in Section 4, we use only the types of

program points as labels of nodes in the SDG and the query graph.
Therefore, we may have a large number of results when querying
the SDG, and we need to filter the results using the other conditions
described in the query. In some cases, the filtering may become
unreasonably time consuming (e.g., more than 24 hours) due to the
large number of results in SDG querying.

To solve the problem, we use a pre-filtering technique. The ba-
sic idea of pre-filtering is to move the filtering of program-point
properties (described in the NodeDescriptions part of a query) be-
fore the graph querying step. Given an SDG (denoted as G) and
a conjunctive query (denoted as Q), we transform Q to a query
graph (denoted as QG). Based on G, Q, and QG, our pre-filtering
technique works as follows.

For each node (denoted as N) in QG, we assign the node a
unique label (denoted as L) and we further find all the nodes in
G that match both the type and the properties of N . Note that an
extra node added into QG during query transformation has only a
type but no other properties. Then, we label all these nodes in G
as L. The aim of this change of labels is to constrain the matched
nodes of N in G during graph querying. In some cases, one node
(denoted as O) in G may match several different nodes in QG.
Thus, there is a conflict of label change, since we cannot assign a
node in G more than one label. To solve the conflict, we add one
or more parallel nodes into G.

For the ease of presentation, let us assume that a node (denoted
as O) in G matched two different nodes (denoted as N1 and N2)
in QG and the labels of N1 and N2 are L1 and L2, respectively.
Thus, we add a new node (denoted as P) into G, such that P has
the same neighboring structure as O. Specifically, for each node
from which there is an edge to O, there is also an edge to P of
the same kind (control or data dependence), and for each node to
which O has an edge, P also has an edge to it of the same kind.
Therefore, the new node P has the same reachability property with
O and adding the parallel node P to G would not affect reachability
relationships between any other nodes in G. We assign the label of
O as L1 and the label of P as L2. Thus, during graph querying,
N1 can match O but not P in G, and N2 can match P but not O
in G.

Due to added parallel nodes, it is possible that our graph query-
ing algorithm returns a result with two or more nodes correspond-
ing to one original node. In such a result, one node in G is actually
matched to two or more nodes in the query graph. As we do not
allow this kind of matches, we filter out such matches by checking
whether there are two or more nodes parallel with each other in the
matched sub-graph.

Table 2: Subjects used in our evaluation
Project Name Description Version Size (KLOC)

expat xml handle library 2002-05-17 13
2002-05-22 13

gpsbabel GPS toolkit 2004-10-27 50
2005-03-21 54

After using the preceding pre-filtering technique, we need to fil-
ter the results of graph querying with only conditions of relation-
ships between program points and the oneStep conditions. Our pre-
filtering technique can save much time of filtering for our approach,
but we need to re-index the SDG when a new query comes. How-
ever, according to our experience, the time for indexing is much
shorter than that for result filtering without pre-filtering.

6. EMPIRICAL EVALUATION
To evaluate our approach, we applied our approach on four search-

ing tasks in four versions of two different real-world open source
C projects: expat and gpsbabel. Table 2 depicts the detailed in-
formation about the four versions of the two projects used in our
evaluation. To make it easier to generalize the findings of our eval-
uation, we chose two of the most downloaded C projects in Souce-
forge5, and the two projects are of different sizes and from different
domains.

To make the four searching tasks close to the real scenario that
developers may face, we extracted the four searching tasks from the
historical versions of the two projects. In particular, we browsed the
historical versions of the two projects, and when we found multiple
modifications in one version over its previous version, we checked
the comments submitted with the modifications. If the comments
imply the application of one change to a number of places, we
deemed that the developers need to perform a searching task to
apply one change to multiple places.

For each of the four tasks, we built a DQL query based on one
changed place that has comments implying the change in multi-
ple places. Section 6.1 presents the results of applying our ap-
proach on the four tasks. To help readers understand our results,
we also applied an approach based on code-clone detection and
an approach based on text search to the same tasks. For the ap-
proach based on code-clone detection, we applied a code-clone de-
tector named DECKARD [10] to each of the four versions. We
then checked each clone group returned by DECKARD, and we
deemed the clone group containing the largest number of places re-
quired by the searching task as the results of the approach based
on code-clone detection. For the approach based on text search,
we built several possible text queries and recorded the results using
each text query.

6.1 Results for the Searching Tasks

6.1.1 Task One
The first searching task is actually the first example in Section 2.

It is from the expat project version 2002-05-17. The comment
of the code change is “Be more careful about failed MALLOC()
and REALLOC() calls. This avoids a number of potential memory
leaks”. Example code of the change is shown in Section 2. As we
have discussed, the developers want to find places where a field of a
struct variable is initialized after the initialization of the struct vari-
able. According to this dependence property, we have the query as
below.

function A, function B, variable C, variable D; A contains "mal-
loc" or contains "realloc", B contains "malloc" or contains "rel-
5http://sourceforge.net/, accessed on 2009.08.31.

loc"; C dataDepends A, D dataDepends B, C dataDepends D, C
isFieldOf D; want C

In the query, A corresponds to the initialization of the struct
variable, B corresponds to the initialization of the field, C corre-
sponds to the field, and D corresponds to the struct variable. We
use dataDepends to describe the relationship from the initialization
of the variable to the variable itself. We further use isFieldOf to de-
scribe the relationship between a struct variable and its fields. We
put C at the wanted list, because C is where the change should be
made.

In this task, the developers actually changed 2 places (i.e., tar-
gets) in the code. Our approach finds both of the 2 places, but
our approach also finds 38 other places (i.e., false positives). By
contrast, it is not surprising that the approach based on code-clone
detection does not find a clone group containing the 2 targets. As
shown in Section 2, the two places do not look similar in the sense
of code cloning. For text search, the only reasonable way is to
search for “malloc” and “realloc” in the code. Actually, there are
33 places in the code containing “malloc” or “realloc”. As this task
requires two related “malloc” or “realloc”, a developer may need
to check each pair of the 33 places to know whether the pair forms
a target required by the task. Note that one of the 2 targets actually
involves two invocations of “malloc()” in two different functions.
Not checking this pair of places with “malloc” may result in miss-
ing one target.

6.1.2 Task Two
The second searching task is from the expat project version 2002-

05-22. The comment of the code change is “Use "NULL" instead of
"0" for NULL pointers. Compare pointers == NULL or != NULL
instead of using the implicit point-to-int conversion”. This com-
ment clearly reflects the purpose of the developers (i.e., changing
comparisons of pointers with 0 to comparisons of pointers with
NULL). Note that this case cannot be caught by the compiler as
warnings.

As there are a large number of control points in the program, the
essence of this searching task is actually to find all the comparisons
of pointers. Therefore, we have the query below.

declaration A, control-point B; A not declareType Native; B on-
eStep dataDepends A; want B

This query actually finds all the comparisons of variables of non-
native types. In the query, A corresponds to a declaration of a
pointer variable, while B corresponds to the control point that in-
volves A. The dependence from B to A is one step because A should
directly declares the variable involved in C. Note that the query is
not very specific to the task and may be refined to get better results.

In this task, the developers actually changed 8 places (i.e., tar-
gets) in the code. Our approach finds all the 8 targets together with
126 false positives. By contrast, the approach based on code-clone
detection still does not find any of the 8 targets. This is also not
surprising because the code-clone detector would not deem com-
parisons of different pointers as cloning. For text search, one pos-
sible way is to search for the string “==0” and “!=0” in the code.
This search finds only 5 of the 8 targets together with 224 false
positives. This search misses 3 targets due to implicit comparisons
with “0” when a pointer variable is used as a condition variable
(e.g., p in if(p)). The large number of false positives is due to
comparisons between integer variables and “0”. Another possible
way of using text search is to search for strings like “for”, “while”,
“switch” and “if” in the code, since all the comparisons should ap-
pear in these control structures. The second text search finds all the
8 targets, but the number of false positives becomes 837.

6.1.3 Task Three
The third searching task is actually the second example in Sec-

tion 2 and is from the gpsbabel project version 2004-10-27. The
comment of the code change is “Aggressively replace open-coded
strncpy for space padded strings in various waypoint send func-
tions”. The submitted code changes demonstrate that the develop-
ers try to find all code structures like the italicized part in the fol-
lowing cod portion, in which a loop is used to copy strings defined
by UC*, and replace them with a special array copy function.

UC* p, str; ...

for(i = 0; i < 10; i++){
str[i] = *p++;

}

The preceding code structure has two dependence relationships.
First, there is a loop (either a for loop or a while loop). Second,
inside the loop, there is an assignment and the assignment data de-
pends on a declaration that declares a variable with type UC* used
in the assignment. As we have introduced in Section 4.1, we have
the query as below.

declaration A, control-point B, assignment C; A declareType UC*,
B controlType for or controlType while; B controls C, C oneStep
dataDepends A; want B

In this task, there are actually 39 targets in the code. Our ap-
proach finds all the 39 targets together with 110 false positives. By
contrast, the approach based on code-clone detection finds 38 tar-
gets with 255 false positives. Unlike the previous two tasks, the tar-
gets in this task share a common loop structure that can be caught
by the code-clone detector. However, the code-clone detector also
catches some other loop structures as similar and brings in more
false positives. The one target that code-clone detection fails to
find is also a for loop. But there are several other statements in the
for loop, so that the similarity between the lost target and the other
targets drops below the threshold. For text search, one possible way
is to search for “for” and “while” in the code. This search finds all
the 39 targets, because all the targets involve a for loop or a while
loop. But this search also finds 297 false positives, because there
are many for loops or while loops used for other purposes. An-
other possible way is to search for UC* in the code and find all the
variables of type UC*. After that a developer needs to further locate
all the references to the these variables to check the assignment to
these variables in for or while loops. In total, the developer needs
to check more than 2000 references to the variables with type UC*
in the code.

6.1.4 Task Four
The fourth searching task is from the gpsbabel project version

2005-03-21. The comment of the code change is “Call waypt_new
instead of explicit calloc to prepare for external alt invalid indica-
tor”. In the submitted changes, the aim is to change all xcalloc()
function calls that initialize variables of type waypoint* to calls
of a new function (i.e., waypt_new()) that specially initializes
waypoint* variables. An example of such a code element is as
below.
waypoint *wpt_tmp;
...
wpt_tmp = xcalloc(sizeof(*wpt_tmp),1);

In the preceding code element, there are two dependence rela-
tionships. The first is data dependence between the waypoint

*wpt_tmp declaration and the wpt_tmp variable. The second is
data dependence between xcalloc() and wpt_tmp. Thus we have
the query as below.

Table 3: Execution time of our approach (in seconds)
Task Query Pre- Index Query Concate- Result Result

Build filter nation Filter Merge
task 1 <0.1 1.7 63.7 1.0 N/A 2.1 <0.1
task 2 <0.1 0.9 29.4 <0.1 N/A 1.1 N/A
task 3 <0.1 3.3 640.0 0.2 4.2 3.6 <0.1
task 4 <0.1 3.3 264.4 1.2 N/A 0.9 N/A

declaration A, variable B, function C; A declareType waypoint,
C contains "xcalloc"; B oneStep dataDepends A, B oneStep dataDe-
pends C; want C

In the query, A corresponds to the declaration of a variable with
the waypoint* type. B corresponds to the variable with the waypoint*
type. C corresponds to the invocation of xcalloc. The depen-
dence between B and C is of one step because variable C should
be the variable that first holds the value of xcalloc(). The de-
pendence between B and A is of one step because A should directly
declares B. C is wanted because the developer wants to locate only
xcalloc() calls.

In this task, there are actually 19 targets in the code, and our
approach finds all the targets together with 3 false positives. By
contrast, the approach based on code-clone detection does not find
any of them. The reason is that the code-clone detector would not
deem invocations of xcalloc() as cloning. In text search, one
possible way is to search for “xcalloc” in the code. This search
finds all the 19 targets, but concedes 86 false positives. The reason
is that there are many other places that invoke xcalloc(). Another
possible way is to search for “waypoint” in the code, and further
check all the references of variables with type waypoint*. This
search returns 620 references to variables with type waypoint*.

6.2 Execution Time
We also recorded the execution time of each step in our approach

for performing each of the four tasks. Table 3 depicts the results on
execution time. Note that we only present the execution time of
steps that are involved in performing a query. We do not present
the execution time of the preparation steps including compiling the
projects, extracting SDGs, and dividing SDGs to two partial SDGs
(each one has only one kind of edge). The execution time of the
preparation steps are not very important because once the these
steps are performed, the developers can do any number of queries
without performing these steps again. Actually, for each searching
task, the total execution time of all preparation steps is less than
one hour. In Table 3, there are three things to be noted. First, the
execution time of “Query Build” (column 2) is the total execution
time of splitting a query to conjunctive queries (if query splitting is
required), transforming from conjunctive queries to graphs, and di-
viding graphs to partial graphs that contain only one kind of edges
(if graph division is required). Second, the execution time of “Con-
catenation” (column 5) is the execution time of concatenating the
results of two partial queries. Since queries for some tasks only
contain one kind of dependence relationships, our approach did not
perform graph division and concatenation and thus the correspond-
ing execution time for concatenation is not available. Third, the
execution time of “Result Merge” (column 7) is the execution time
of merging the results of conjunctive sub-queries. Similarly, if a
query does not contain disjunctives of conditions and thus result
merging is not required, its execution time of result merging is not
available.

From this table, we can see that the execution time for the short-
est search is around half a minute, and that for the longest search
is around 11 minutes. The execution time may be too long for de-
velopers to use our approach in an interactive manner. However,

as our approach does not require user involvement in the searching
process, it is possible for developers to use our approach in an off-
line way. Therefore, the execution time should not be a big burden
for developers.

Furthermore, this table also demonstrates that the most time-
consuming step in our approach is graph indexing. Currently, since
our approach adds some parallel nodes in the pre-filtering step, our
approach needs to re-index the graph when a new query comes.
As the number of added nodes is small, it should be possible to
develop an incremental indexing algorithm to add more indexing
information about the added parallel nodes on the base of the ex-
isting indexing information. With such an incremental indexing
algorithm, we may further accelerate our approach.

6.3 Threats to Validity
The main threat to internal validity in our evaluation is the pos-

sible faults in the implementation of the evaluated approaches. To
reduce this threat, we acquired the implementation of DECKARD
from one author of the tool and used the text-search facility of a
mature text editor. Furthermore, we reviewed all the code of the
implementation of our approach before conducting the evaluation.

In our evaluation, we applied our approach with the approach
based on code-clone detection and the text-search approach on four
searching tasks for two subjects. This factor may be a threat to
the external validity, as our empirical results may be specific to
the used tasks and subjects and thus not generalizable. To reduce
this threat, we used different tasks with subjects from different do-
mains. Further reduction of this threat needs further evaluation with
more tasks and more subjects.

As the searching tasks were recovered from the subjects, the sce-
narios involved in the tasks may not reflect scenarios in real-world
development. This factor may be a threat to the construct validity.
To reduce this threat, we used the version history of each subject,
and carefully examined the change comments and the changed code
to figure out the purpose of the developers for each searching task.

6.4 Discussion
According to the results presented in Section 6.1, our approach

has a considerable number of false positives in the four searching
tasks. These false positives are mainly due to that we used sim-
plified ways to specify search requirements. However, compared
with code-clone detection and text search, in which many search re-
quirements cannot be specified, our approach does provide a means
to appropriately specify different search requirements. In fact, it is
still possible to refine the queries for our approach to further reduce
the false positives.

Furthermore, the searching tasks imply that the developers know
what the targets should look like. That is to say, the developers can
use our approach for real-world development in spite of the false
positives, since it is possible for they to check each result returned
by our approach to distinguish targets from false positives. Note
that our approach is able to find all the targets in all the tasks with
much fewer false positives than the other two approaches in our
evaluation.

7. RELATED WORK
In essence, our approach searches for code elements satisfying

some common semantic constraints described with our DQL. Thus,
the research most related to our approach is various generic code-
search techniques. Generic code-search techniques are code-search
techniques that allow users to write different queries for different
searching tasks. The main advantage of generic code-search tech-
niques is that users can easily use them in different searching tasks
without changing the underlying searching algorithm.

The most popular category of generic code-search techniques is
text search, including plain text search, regular expression search,
and natural language based code search [6, 9]. The main difference
between these techniques and our technique lies in that, besides
textual information, our approach further allows users to describe
dependence relationships between program points in the target code
elements. Our empirical results demonstrate that descriptions of
dependence relationships help improve the accuracy of code search
in many searching tasks.

Another category of generic code-search techniques is code-search
based on model checking. By using mode checking, such a tech-
nique allows users to describe temporal conditions in queries. For
example, Li and Zhou used model checkers to locate the outliers of
coding rules, such as finding the place where a call to File.open()
is not followed by a call File.close() [12]. Another typical ex-
ample in this category is a technique recently proposed by Brunel
et al. [2]. As a supporting technique for a generic patch-inference
tool [1] (which infers and applies common characteristics of patches
for Linux drivers), Brunel et al.’s technique can locate code ele-
ments satisfying certain control-flow properties using model check-
ing. Unlike Brunel et al.’s technique, our technique uses graph
matching to check which code elements satisfy the required se-
mantic characteristics. Furthermore, our approach allows users to
describe data dependence relationships as well as control depen-
dence relationships between program points in queries. In some
searching tasks discussed in this paper, description of data depen-
dence relationships in queries is essentially helpful for locating se-
mantically similar code elements. Actually, as data dependence
relationships in the System Dependence Graph (SDG) may not be
described as temporal relationships, model checkers may not be
suitable to check these data dependence relationships.

Generic code search can also be based on checking properties
acquired at runtime. Martin et al. proposed the Program Query
Language (PQL) [14], which allows users to describe a pattern of
sequentially executed invocations on objects. For each query, the
searching technique based on PQL first statically checks the pro-
gram to acquire a list of candidate program points that may appear
in instances of the pattern. Then the candidate program points are
instrumented and the pattern is matched dynamically during the
execution of the instrumented program. There are three main dif-
ferences between the search technique based on PQL and our tech-
nique. First, PQL focuses on control flows and does not allow de-
scriptions of data dependence relationships. Second, PQL focuses
on only invocations of objects, while our technique can also han-
dle many other program points, such as expressions, control points,
and declarations. Third, PQL matches code patterns dynamically,
while our technique matches queries statically.

To our knowledge, our technique is the first generic code-search
technique that allows users to describe data dependence relation-
ships, control dependence relationships, and textual conditions in
one query.

The main disadvantage of generic code-search techniques is that
they may not be sufficiently precise on some particular tasks. There-
fore, there are also intensive investigations on specialized code-
search techniques for some commonly encountered tasks. Special-
ized code-search techniques are code-search techniques that search
for code elements with pre-defined patterns. The searching algo-
rithm in a specialized code-search technique typically focuses on
just one pre-defined pattern and thus can be more precise, but no
specialized code-search techniques can search for a pattern other
than the pre-defined patterns. That is to say, generic code-search
techniques and specialized code-search techniques are not replace-
able with each other.

Code-clone detection [11, 10, 5] is a category of techniques that
focus on finding similar code segments in the code base of a pro-
gram. Using code-clone detection, developers can search for code
portions with certain properties (that some code portions are known
to share). Since developers typically have known some code ele-
ments when locating all the semantically similar code elements,
code-clone detection may be adopted for this purpose. However,
our empirical results demonstrate the superiorness of our approach
over code-clone detection for this purpose. We suspect the essen-
tial reason to be that code-clone detection techniques are actually
specialized code-search techniques designed for another purpose.

Slicing is a category of techniques that locate a subset of the
program points that affect a certain variable or depend on a cer-
tain variable [19]. In this sense, it is also a specialized code search
technique. The main difference between our technique and slicing
is that slicing must start from a known variable, and the query is
pre-defined (all program points affecting or be affected by the vari-
able), while our technique allows more flexible queries defined by
the developers.

Our work is also related to techniques for recommendation of
code samples [7, 21], which actually search for matched code sam-
ples in the source code of a number of programs. Our technique
differs from these techniques in the following ways. First, these
techniques work on only API-invocation structures, while our work
can handle both API invocations and other program points. Second,
these techniques use pre-defined rules, and users cannot describe
the characteristics of target code samples in queries.

FindBugs6 [8] and PMD7 [4] are two popular static checking
tools. Both tools use pre-defined bug patterns and can search for
instances of these bug patterns in source code. For each pattern, a
detector, which can be integrated with the two tools based on some
code managing APIs, is developed specially to search for code ele-
ments matching the pattern. However, for the scenario of locating
semantically similar code elements, the pre-defined patterns may
not be sufficient for all cases. It is not feasible for developers to
write a new detector for each new searching task.

Additionally, there are a number of efforts on locating code el-
ements in more specialized tasks. Due to space limit, we only
introduce some recent efforts as below. Maule et al. proposed a
technique to search for code elements that are affected by a given
database-schema change [15]. Wang et al. proposed a technique to
search for constant string variables that finally goes to the GUI to
facilitate software internationalization [18]. These two techniques
are essentially specialized code-search techniques, because they are
specific to two kinds of code patterns. In a broader sense, feature-
location techniques [20] can be viewed as specialized code-search
techniques, because such a technique tries to search for code el-
ements that are related to a given feature. Jungloid-search tech-
niques [13, 16, 17] can also be viewed as specialized code-search
techniques, because such a technique tries to search for conversion
code from a source object type to a target object type. A distinct
feature of Jungloid-search techniques is that the search is not con-
fined to the source code of just one program.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel approach that helps developers

locate semantically similar code elements. Our approach includes
a query language that allows developers to describe dependence re-
lationships, an algorithm to transform queries to graph patterns, a
graph-indexing and querying algorithm, a result filter, and an op-

6http://findbugs.sourceforge.net/
7http://pmd.sourceforge.net/

timizer based on pre-filtering. We evaluate our approach on four
searching tasks acquired from four versions of two real-world C
projects. The results of our evaluation demonstrate that our ap-
proach is able to locate all the targets with reasonable execution
time. Furthermore, our approach outperforms code-clone detection
and text search by finding more targets and conceding fewer false
positives.

There are several ways to improve or extend our approach. First,
as mentioned in Section 6.3, there are several threats to the validity
of our empirical results. We plan to expand the set of searching
tasks by studying more versions of more projects. Furthermore, we
also plan to do some user studies in real-world projects to further
evaluate our approach.

Second, in this paper, we use graph indexing and querying to
search the system dependence graph that describes dependence re-
lationships between program points. As there are also other kinds
of graphs (e.g., class diagrams in object-oriented programs) in soft-
ware development, we plan to extend our approach for these graphs.

Third, our pre-filtering requires re-indexing the system depen-
dence graph when a new query comes and the re-indexing is the
most time-consuming part in our approach. As re-indexing in our
approach actually faces a small number of added nodes, we plan to
investigate incremental re-indexing algorithms that can index only
the newly added nodes.

9. REFERENCES
[1] J. Andersen and J. L. Lawall. Generic patch inference. In

ASE, pages 337–346, 2008.
[2] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, and

G. Muller. A foundation for flow-based program matching:
using temporal logic and model checking. In POPL, pages
114–126, 2009.

[3] J. Cheng, X. J. Yu, B. Ding, P. Yu, and H. Wang. Fast graph
pattern matching. In ICDE, pages 913–922, 2008.

[4] T. Copeland. PMD Applied. Centennial Books.
[5] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic

clones. In ICSE, pages 321–330, 2008.
[6] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically

capturing source code context of NL-queries for software
maintenance and reuse. In ICSE, pages 232–242, 2009.

[7] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE, pages 117–125,
2005.

[8] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92–106, 2004.

[9] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. In AOSD, pages 178–187, 2003.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:
Scalable and accurate tree-based detection of code clones. In
ICSE, pages 96–105, 2007.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. TSE, 28(7):654–670, 2002.

[12] Z. Li and Y. Zhou. PR-miner: automatically extracting
implicit programming rules and detecting violations in large
software code. In ESEC/FSE, pages 306–315, 2005.

[13] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid
mining: Helping to navigate the API jungle. In PLDI, pages
48–61, 2005.

[14] M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: A program query
language. In OOPSLA, pages 365–383, 2005.

[15] A. Maule, W. Emmerich, and D. S. Rosenblum. Impact
analysis of database schema changes. In ICSE, pages
451–460, 2008.

[16] N. Tansalarak and K. T. Claypool. XSnippet: Mining for
sample code. In OOPSLA, pages 413–430, 2006.

[17] S. Thummalapenta and T. Xie. ParseWeb: a programmer
assistant for reusing open source code on the web. In ASE,
pages 204–213, 2007.

[18] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. Locating
need-to-translate constant strings for software
internationalization. In ICSE, pages 353–363, 2009.

[19] M. Weiser. Program slicing. In ICSE, pages 439–449, 1981.
[20] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL:

Towards a static noninteractive approach to feature location.
TOSEM, 15(2):195–226, 2006.

[21] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending API usage patterns. In ECOOP,
pages 318–343, 2009.

