
Model–Driven Remote Attestation: Attesting Remote System from Behavioral
Aspect

Liang Gu1,2, Xuhua Ding2, Robert H. Deng2, Yanzhen Zou1, Bing Xie1, Weizhong Shao1, Hong Mei1
1 Key Laboratory of High Confidence Software Technologies, Peking University,

{guliang05, zouyz, xiebing, wzshao, meih}@sei.pku.edu.cn
2 School of Information Systems, Singapore Management University,

{xhding, robertdeng}@smu.edu.sg

Abstract

Remote attestation was introduced in TCG specifications
to determine whether a remote system is trusted to behave
in a particular manner for a specific purpose; however,
most of the existing approaches attest only the integrity
state of a remote system and hence have a long way to go
in achieving the above attestation objective. Behavior–
based attestation and semantic attestation were recently
introduced as solutions to approach the TCG attestation ob-
jective. In this paper, we extend behavior–based attestation
to a model–driven remote attestation to prove that a remote
system is trusted as defined by TCG. Our model–driven
remote attestation verifies two compliance requirements
to prove the trustworthiness of a remote system: expected
behavior compliance and enforced behavior compliance.

Keywords: Trusted computing, remote attestation, se-
curity policy

1 Introduction

Remote attestation was first introduced as an important
feature in trusted computing and supposed to attest the
trustworthy of remote platform configurations. A trusted-
platform device attests its state by reporting its integrity
state, for example, the values in the registers inside the
Trusted Platform Module (TPM) chip [1]. This feature
enables a challenger to have certain confidence about the
integrity state of the remote platform. The TCG specifi-
cations introduce a layered integrity measurement mecha-
nism to measure the platform integrity from hardware to
applications and authenticate remote platform to the chal-
lenger based on the primitive attestation function provided
by TPM. With the authenticated boot or secure boot in-
troduced in TCG specifications, a platform can prove the

genuineness of both hardware and software at the sys-
tem initialization stage. It provides a primitive attestation
service to support higher level remote attestation mecha-
nisms, e.g., remote attestation of applications. Several re-
mote attestation mechanisms have been proposed based on
this primitive attestation service in trusted computing, e.g.,
[2, 3, 4, 5, 6].

However, research in remote attestation is still in its in-
fancy and many technical challenges need to be overcome.
The first challenge is closing the gap between existing re-
mote attestation solutions and TCG’s objective. In TCG
specifications, trust is defined as “the expectation that a de-
vice will behave in a particular manner for a specific pur-
pose”. In other words, for the purpose of proving that
remote platforms or programs are trustworthy, remote at-
testation is required to prove that these targets behave as
expected. However, existing remote attestation solutions
mostly check only the configuration or integrity state of
remote platforms or programs. These solutions can not
achieve the attestation objective as specified in TCG’s trust
definition. The second problem is that most of the exit-
ing attestation mechanisms have not specifically considered
how to attest programs at runtime in a dynamic environ-
ment effectively and efficiently. This is because the runtime
environments of programs are dynamic and difficult to pre-
dict. In TCG’s primitive integrity report mechanism, TPM
simply measures and records all configuration states of the
platform. However, the specific semantic meanings of these
giant numbers of configuration states have not been specifi-
cally studied. It is still not clear how to translate these sys-
tem configurations into a trust decision in remote attestation
[7]. The question is how challengers can employ the exist-
ing lower level attestation schemes to prove that a remote
target behaves as expected.

In a typical modern operating system, all operations can
be restricted by system policies. Some existing operating
systems employ discretionary access control to protect sys-

The 9th International Conference for Young Computer Scientists

978-0-7695-3398-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICYCS.2008.349

2347

tem resources. Recently, some works [8, 9, 10] tried to in-
troduce Mandatory Access Control (MAC) to restrict sys-
tem behaviors. These policies specify how subjects should
behave and how objects may be accessed in an operating
system. The behavior restrictions in a policy represent the
system behavior expectation of policy producer. Today,
most systems are under the control of their users or sys-
tem administrators. Besides modifications made by system
users, system compromise may also lead to changes of sys-
tem security policy. SElinux [11] is a typical Mandatory
Access Control implementation which supports dynamic
polices. For the purpose of attesting remote systems, it is
necessary for challengers to attest both real time system
behaviors and their system access control policy enforce-
ment. For different policy enforcement mechanisms, a spe-
cific behavior model can have different implementations. In
a specific application, a challenger may only need to know
whether the behavior model of attesting target satisfies their
attestation objective, leaving the policy implementation de-
tails verification in an automatic and transparent approach
at lower level.

Haldar et al. [4] proposed the concept of semantic re-
mote attestation and Li et al. [12] proposed the concept
of behavior based attestation. These approaches initiated
the trend of attesting remote system from a behavioral as-
pect. However, these approaches are still at a primitive
level. Haldar et al. [4] did not specify how to practically
attest software system behaviors. Li et al. [12] only dealt
with static policy and just attested system behaviors records.
We extend the behavior based attestation and semantic re-
mote attestation to a more practical approach: model-driven
remote attestation, which attests the system behaviors and
system policy enforcement mechanism to prove whether a
remote target behaves as expected. By extracting behav-
ior model from enforced policy or generating policy in-
stances of expected behavior model, the challenger verifies
whether the behavior model dictated by an enforced policy
is trustworthy. By building an attestation service to moni-
tor and record the dynamic enforcement of policy and sys-
tem behaviors, the challenger verifies these measurements
to check whether the expected behaviors in the enforced
policy are correctly executed. Our model–driven attestation
closes the gap of attestation objectives between existing at-
testation schemes and final expectation of TCG specifica-
tion, and can also be applied on various platforms.

2 Background

2.1 Trusted Computing

TCG has established a serial of specifications about the
trusted computing [1]. There are some upcoming tech-
nologies of trusted computing, e.g., AMD’s Secure Virtual

Machine (SVM) architecture [13] and Intel’s Trusted Exe-
cution Technology(TXT) [14]. The trusted computing re-
quires following core features:

• Trust root: Trusted Platform Module (TPM), which is
a specially designed and implemented chip, functions
as the trust root and employs cryptographic functions
to support other mechanisms in the trusted platform;

• Secure boot or authenticated boot: Secure boot is a
layered booting mechanism in which the lower lay-
ers verifies the integrity state of upper layers before
the control is transferred from the lower to the upper.
The transfer is only allowed when upper layer is of in-
tegrity. In case of being compromised, the boot pro-
cess terminates. While the authenticated boot only
records the measurements of each layers at booting
time and leave the integrity verification in the process
of attestation.

• Memory curtaining: A strong, hardware-enforced
memory isolation feature to guarantees the integrity of
executing processes and prevents tampering from other
unauthorized processes.

• Secure I/O: Provides a secure path from the keyboard
to an application and from the application back to the
screen.

• Sealed storage: A mechanism to protect data by keys
based in part on the identity of the software requesting
to use them and in part on the identity of the computer
on which that software is running.

• Remote attestation: A process to prove the trustwor-
thiness of remote parties including hardware and soft-
ware.

2.2 Remote Attestation

With other fundamental features, trusted computing plat-
forms employs attestation mechanism to authenticate them-
selves including their hardware and software. The attesting
platform employs TPM’s integrity measurement to measure
the platform and securely storages these measurements. On
receiving an attestation request from a challenger, the attest-
ing platform sends measurements back to the challenger.
The challenger verifies these measurements to check the
configuration of attesting platform. This attestation func-
tion provides a primitive service for attesting higher level
applications. However, as the dynamically changed pro-
grams and theirs runtime environments, this primitive attes-
tation mechanism is not enough to achieve the goal stated
in the definition of trust by trusted computing [1], which is
to prove whether a remote system behaves as expected. The

2348

TCG attestation is also static, inflexible and inexpressive
[4]. Its integrity report mechanism still has to face the pro-
gram upgrades, program patches and revocation problems.

In order to solve these problems of TCG attestation,
some remote attestation schemes were introduced. Integrity
Measurement Architecture (IMA) [3] and property based
attestation [15, 6, 16] only concerns the specific configura-
tion states of remote platform. Shi et al. proposed BIND
[17] which is a fine-grained attestation mechanism. How-
ever, BIND only attests some specific program code blocks’
integrity. Besides lacking of behavior attestation, these at-
testation mechanisms still have problems as following [7]:
the giant complexity of software system configurations; the
specific semantic meanings of such software configurations
have not been specifically studied. The semantic remote
attestation [4] introduced a trusted virtual machine (TVM)
based semantic monitoring and remote attestation scheme.
It specified that attestation should attest dynamic system be-
haviors, not a particular binary. Li et al. [12] and Zhang et
al. [18] both introduced the concept of behavior remote at-
testation. Zhang et al. [18] constructed a process tree which
reflects the domination relationship among processes, and
this process tree is used for remote attestation to identify
suspect processes. However, their work did not concern all
possible security behaviors such as data objects involved be-
haviors.

2.3 Security Policy

Operating system security mechanisms are foundations
to enforce the separation of information based on confiden-
tiality and integrity requirements to guarantee system secu-
rity. System policy is a set of rules governing subjects and
objects in system, and it specifically restricts the behaviors
of subjects (processes and users) in system. For example,
it specifies which subjects can access which objects. Com-
monly, there exist two categories of access control models:
Discretionary access control(DAC) and Mandatory access
control (MAC). Traditional operating systems employ DAC
mechanisms. However, these DAC mechanisms are vul-
nerable to tampering and bypass, and malicious program
can easily compromise the system security. These vulnera-
bilities of DAC models can be addressed by MAC mecha-
nisms [19]. MAC policy is enforced over all subjects (pro-
cesses) and objects (e.g., files, sockets) in system. The
Security-Enhanced Linux (SELinux) [20] is one of the most
promising solutions to enforce MAC policy in operating
system. SELinux implements the flexible and fine-grained
MAC architecture Flask [9] in the Linux kernel. It separates
the policy decision-making logic from the policy enforce-
ment logic which is encapsulated within a single component
known as the security server with a general security inter-
face. SELinux provides an example security server which

implements a combination of Type Enforcement model ,
Role-Based Access Control (RBAC), and optional Multi-
Level Security.

Different types of security models are widely applied
in different applications. Meanwhile, different platforms
may have different implementations for a specific security
model. For some situations, challengers may only want to
attest the higher level behavior model of system behaviors
instead of checking all these lower level details. For exam-
ple, a specific application program may only be concerned
about its application level security policies by ignoring the
implementation details in operating system level security
policies. For these considerations, we introduce a model-
driven remote attestation scheme to support a higher level
behavior model attestation to prove that the remote target
behaves as expected, or in other words, to prove whether
the remote target is trustworthy. In our scheme, the attest-
ing target can be a process, a sub system, a pure software
system hosting on certain platform, as well as a whole plat-
form. Remote attestation is supposed to prove whether the
attesting target and its execution environment satisfy certain
behavioral expectation.

3 Model-Driven Remote Attestation

3.1 Behavior Model

As the definition of trust in TCG specifications, the pur-
pose of remote attestation should attest that a remote target
behaves as expected. We consider two types of behaviors in
our behavior model: attesting target’s behaviors and policy
change behaviors. Attesting target’s behaviors are restricted
by the policy enforcement mechanism. Policy change be-
haviors refer to policy creating, replacing or updating be-
haviors which dynamically change the system security poli-
cies and affect the behaviors of attesting target.

We use a state machine model [21] to depict the
system behaviors and policy change behaviors. A
system is a state machine M which is defined as
(U, S, SC, Out, Capt, CC, fout, fdo, fcdo, S0, t0):

• U : A set whose elements are subjects (pro-
cesses,users), and its element is denoted as u;

• S: A set whose elements are system states, which are
determined by the states of all its subjects and objects,
and its element is denoted as s;

• SC: A set whose elements are process’ state changing
commands, and its element is denoted as sc;

• Out: A set whose elements are all possible outputs;

• Capt: A set of capability tables which specify the per-
mission of subjects, and these capabilities are deter-
mined by the system policy;

2349

• CC: A set of policy state changing commands which
change the Capt, and its element is denoted as cc;

• fout(s, Capt, u): S × Capt × U → Out, a function
gives specific outputs when the system is with a spe-
cific state, a specific user, and a specific capability set;

• fdo(s, Capt, u, sc): S × Capt × U × SC → S, a
system state change function;

• fcdo(s, Capt, u, cc): Cpat× U × CC → Capt, a ca-
pability set state change function;

• S0: The initial machine state;

• t0: The initial state of capability set;

Trustworthy Behavior Model A system policy specifies
behaviors of all subjects in system, and all these behavior
permissions are denoted as a set Capt. System behaviors
are executions of a sequence of state change commands.
Let C=SC

⋃
CC, and then a subset of C represents a be-

havior. Let Ab denote the set of all C’s subsets, then the
Capt = {U × S → Ab}. These behavior permissions
represent the expected behaviors which the remote target is
supposed to or not to carry out. The behavior models come
into two kinds: expected behavior model and enforced be-
havior model. Expected behavior model is a behavior pat-
tern that a remote target is supposed to behave as, which is
also the expectation of challenger; enforced behavior model
is the behavior pattern contained by the enforced policies in
system at runtime, which is the exact enforced one.

An enforced policy is trustworthy only when the en-
forced behavior model complies with the expected behavior
model of challenger. A behavior model M1 complies with
another behavior model M2, only when M1 holds a more
restricted security requirements thanM2 , orM1 holds the
equivalent behavior model as M2, or M1 has exactly the
same implementation as M2.

Trustworthy Behavior: At runtime, system enforces se-
curity policy to restrict system behaviors. Therefore attest-
ing target’s enforcement behaviors can be identified by the
system state change function: fdo(s, Capt, u, sc) : S ×
Cpat×U ×SC → S. An enforcement behavior of subject
u in system is denoted as bs : si+1 = fdo(si, Cpat, u, sc).
Security policy may be changed and these kinds of behav-
iors can be represented by the capability set state change
function: fcdo(s, Capt, u, cc) : Cpat× U × CC → Cpat.
A policy change behavior of subject u in system is denoted
as bp : Capti+1 = fdo(s, Cpati, u, sc). For a state si ∈ S,
if si is in a trustworthy state, and a subject u’s behavior
bs : si+1 = fdo(si, Cpat, u, sc) is correctly executed, then
the system state si+1 is trustworthy. The correct execution

of b means that the program codes of b’s state change com-
mands are correctly executed.

Trustworthy Behavior Patterns For a sequence of sys-
tem behaviors Seq = b1b2...bn, if all these behaviors are
correctly executed and the system starts from a trustworthy
state s0 and finishes at a state sn, then sn is trustworthy.
Different kinds of behavior patterns can be transformed to
a composition of behavior sequences. At runtime, remote
target behaves in certain patterns. If these behavior patterns
are correctly executed and the system starts from a trustwor-
thy state, then the final state of the system is trustworthy and
this execution process is trustworthy.

3.2 Behavior Model Attestation

For TCG specification, in order to prove whether a re-
mote target is trustworthy or not, it is necessary to verify
whether the remote target satisfies following two require-
ments.

• Expected behavior compliance requirement: The
security policies enforced by system should be in com-
pliance with the expected behavior models.

• Enforced behavior compliance requirement: The
system behaviors should exactly follow the security
policy and the state change commands (codes) of these
behaviors should be correctly executed.

Expected Behavior Compliance The security policy en-
forced by a remote target may be changed dynamically. The
enforced policy may also be different types and with vari-
eties of implementations on different platforms. An ideal
solution to check the compliance among different policy im-
plementations is to evaluate their behavior model according
to the expected behavior model. For all different policy im-
plementations, they can be transformed to some low-level
policy languages like XACML [22] to represent the same
behavior model and support compliance check. For some
applications, it is also possible to extract the behavior model
from the policy implementation and represent the behavior
model at an abstract level, like the behavior model in sec-
tion 3.1. At time of verification, a challenger verifies the
intermediate representation target policy or abstract behav-
ior models according to the expected behavior model. For
different types of abstract models, we may employ model
transformation techniques to verify their equivalence, such
as OMG’s Query View Transformation (QVT) [23].

Another solution to check the compliance among differ-
ent policy implementations is to directly compare the target
implementations with standard expected implementations.
For a specific expected behavior model, we may employ

2350

some automatic policy generation tools to get all its pos-
sible implementations on some specific platforms [24]. At
time of attestation, a challenger may compare the enforced
policy with all these expected policy implementations. If
there is any one implementation which is exact the same as
the enforced policy, the enforced policy is trustworthy.

Enforced Behavior Compliance Enforced behavior
compliance requires that the actual behaviors (program
executions) are correctly executed and comply with the
enforced behavior model. In order to achieve the enforced
behavior compliance, it is necessary to guarantee the
correct function of policy enforcement components and
correct execution of behavioral commands. The policy
enforcement components and the behavioral commands
are essentially program codes. The problem is how to
guarantee the correct execution of program codes. We
employ the isolated memory of trusted virtual machine to
support the correct execution of program codes [2, 25].
Immediately before a program is executed, the program’s
state is recorded. Then the program runs with the protection
of isolated memory. It is possible to check whether the
program codes are correctly executed by attesting the state
of program codes immediately before they are executed.

In our scheme, the target’s behaviors and the policy
change behaviors are all recorded for verification. The
record of a target behavior contains the states of the
system before and after the behavior’s enforcement, as
well as the state of the behavior’s commands. The record
of a policy change behavior contains the policy before
and after the behavior’s execution. In order to attest
whether a remote target satisfies these two compliance
requirements introduced above, the process of verification
in remote attestation consists of two parts: verification on
expected behavioral model and verification on behavioral
commands’ execution.

3.3 Model-Driven Remote Attestation
Architecture

The architecture of our model-driven remote attesta-
tion scheme is shown in Figure 1. The architecture of
our scheme follows the basic framework of TCG attesta-
tion which consists of two parties: challenger CH and at-
tester platform Hr. The attester platform is supposed to be
equipped with a TPM which functions as the trust root of
the attester platform. The attester platform is also required
to install an attestation serviceAS and a policy enforcement
component PE . The PE enforces specific security policies
on Hr. The AS runs as a service in operating system to
monitor and record all related subjects, objects and their
behaviors. The communication between the challenger CH

and attesting platform Hr should be protected by a secure
channel.

We use trusted virtual machine (TVM) to monitor the at-
testing target’s behaviors and related semantic information
like configuration state. TVM based approach has follow-
ing advantages: the TVM can provide strong process isola-
tion via virtual memory management; the executed codes,
including operating system, are completely monitored by
TVM. It is also possible to replace TVM with Secure Ker-
nel (SK) [25] in our scheme. SK also provides the strong
process isolation at runtime.

Trust Chain The TPM is the trust root of remote attes-
tation. The AS employs features of TPM to guarantee the
trustworthiness of the remote attestation process. When the
attesting platform is being booted, an authenticated boot
process is employed to record all the states of the plat-
form from hardware to operating system. For application
programs, attestation service monitors target programs and
records their states immediately before they are executed.
These measurements are protected by the secure storage of
TPM. At the time of attestation, a challenger may verify the
trust chain from TPM to AS by evaluating these measure-
ments. AS monitors and records PE’s execution, and these
records are used to prove whether the policy enforcement
mechanism functions correctly.

Attestation Service The attestation service can be imple-
mented as an operating system service to monitor the be-
haviors of attesting target and security policy enforcement
and changes. Attestation service dynamically records all
related subjects’ states before and after the enforcement of
behaviors. The behavioral information for AS to record in-
cludes: state change behaviors in the system, states of sys-
tem subjects (programs, data objects, etc.) before and after
the enforcement of behaviors, states of policy enforcement
components PE immediately before the execution, security
policies.

Attestation Procedure A typical attestation process is
carried out as following steps: With the support of TPM and
trusted virtual machine ,AS monitors and records the states
and behaviors of running programs and their runtime en-
vironment in remote system, including the policy enforce-
ment components PE ; When CH sends a challenge mes-
sage to AS, AS returns measurements back to CH and CH
verifies the measurements to attest whether the remote sys-
tem behaves as expected. In verification phase, challenger
first verifies the initial subjects states in the system before
these behaviors, then verifies the correct execution of these
behaviors. If no failed verification happens, the enforced
behavior compliance is satisfied. Then challenger has to
verify the enforced behavior model is trustworthy. As we

2351

Attester

Platform

Attestation

Service 1. Attestation

Request

2. Attestation

Response

Quote and

signing service

TPM

Challenger

3. Verification

application1 application2...

Policy Enforcement

OS

TVM

Object

Request

Object

Request

Behavior and

state record

Hardware

Figure 1. Model-Driven Remote Attestation Architecture

have introduced in Section 3.2, there are two ways to check
the expected behavior compliance. The first way is to ver-
ify the enforced policy by comparing it with standard pol-
icy implementations which stand for the expected behavior
models. If one policy instance is matched with the enforced
policy, the enforced behavior compliance is satisfied. The
second approach is to extract behavior models from the en-
forced policies and comparing the extracted models with the
expected behavior model. If these extracted models comply
with the expected behavior model, then the expected behav-
ior compliance is satisfied.

3.4 Implementation: Attestation Service
in Linux

We are now building our attestation service with Linux
Security Module (LSM) [10] in Linux with 2.6.24 kernel.
The LSM interfaces provide a broad set of hooks for en-
forcing system access control policy for the kernel. For ex-
ample, SElinux [11] is a typical Mandatory Access Control
implementation of LSM, which supports dynamic policies.
Our attestation service dynamically monitors the system be-
haviors, and intercepts the information of system calls han-
dled by these hooks, including program execution, file op-
erations, kernel modules, as well as inter-process communi-
cation. By analyzing these operations’ initiators and targets,
attestation agent monitors the dynamic behaviors of pro-
cesses and records their states. We implement the process
of measuring a specific objects as a separated routine which
is called by these inspected points in selected LSM hooks.
The measurement service calls are inserted into hook func-
tions at critical points to dynamically monitor the running of
processes and carry out measurements for specific targets.
This measurement service measures the target objects and
securely stores the results as well as dynamic dependencies
via TPM encryption function.

In LSM, the policy decision-making logic is encapsu-
lated within a single component known as the security
server with a general security interface. Therefore our at-
testation service specifically monitors the security server to
attest the enforced behavior compliance.

4 Related Work

Most of the existing hardware-based attestation mech-
anisms employ TPM as the trust root. Terra [2] uses a
Trusted Virtual Machine Monitor (TVMM) to partition a
tamper resistant hardware platform into multiple virtual
machines (VM) that are isolated from each other. With
the protection of trusted hardware, TVMM provides both
open-box VM and closed-box VM. TVMM can identify the
contents of the closed box to remote parties, guaranteeing
the trustworthiness of the content. Sailer et al. [3] intro-
duced an integrity measurement architecture (IMA) which
employs a loading time integrity measurement mechanism
based on TPM to measure dynamic executable content from
the BIOS all the way up to the application layer. Hal-
dar et al. [4] introduced a semantic attestation mechanism
based on a trusted virtual machine (TVM). The TVM based
semantic attestation mechanism enables the remote attes-
tation of high-level program properties. Shi et al. [17]
proposed BIND which is a fine-grained attestation mech-
anism. BIND provides evaluation interfaces to attest the
concerned pieces of code in an application. Jaeger et al. [5]
introduced the Policy-Reduced Integrity Measurement Ar-
chitecture (PRIMA) based on the information flow integrity
in mandatory access control (MAC) policy. Li et al. [12]
presented a system behavior-based attestation model which
determines the trust state of target platform from its sys-
tem trustworthiness related behaviors. Poritz et al. [15],
Sadeghi et al. [6] and Chen et al. [16] separately introduced
the property-based attestation which employs TPM to mea-

2352

sure and verify the evidences of security properties without
revealing the exact configurations of a target platform.

5 Conclusion

In this paper, we introduced the model–driven remote
attestation to prove whether a remote system behaves as
expected. Our model-driven remote attestation scheme is
mainly carried out in two steps. First, being supported by
trusted virtual machine on the remote system, the attesta-
tion service dynamically monitors and records system be-
haviors including system state changes and security pol-
icy enforcements. Second, at the time of attestation, a
challenger verifies two trustworthy requirements to attest
whether the remote system behaves as expected: expected
behavior compliance and enforced behavior compliance.
The expected behavior compliance is verified by extract-
ing behavior model from enforced policies or generating
policy instances for expected behavior model; the enforced
behavior compliance is checked by verifying the runtime
records of system behaviors. By attesting the behavioral
aspect of remote systems, our model–driven remote attes-
tation scheme brings us a step closer to the final goal of
remote attestation in TCG specifications: to attest that a re-
mote system behaves as expected.

Acknowledgements This work is partly supported by the
High-Tech Research and Development Program of China
under Grant No. 2007AA010301 and partly supported by
the Office of Research, Singapore Management University.

Liang Gu is a Ph.D student at the Peking University and
is currently on attachment to the School of Information Sys-
tems, Singapore Management University.

References

[1] Trusted Computing Group, “Trusted computing specifications.”
http://www.trustedcomputinggroup.org/specs/.

[2] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:
A Virtual Machine-Based Platform for Trusted Computing,” in SOSP
2003, (Bolton Landing, New York, USA), October, 2003.

[3] R. Sailer, X. Zhang, T. Jaeger, and L. v. Doorn, “Design and Imple-
mentation of a TCG-based Integrity Measurement Architecture,” in
Proceedings of the 13th USENIX Security Symposium, (San Diego,
CA, USA), August, 2004.

[4] V. Haldar, D. Chandra, and M. Franz, “Semantic Remote
Attestation–A Virtual Machine directed approach to Trusted Com-
puting,” in the Third virtual Machine Research and Technology Sym-
posium (VM ’04). USENIX., 2004.

[5] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: policy-reduced in-
tegrity measurement architecture,” in SACMAT ’06 : Proceedings of
the eleventh ACM symposium on Access control models and tech-
nologies, (New York, NY, USA), pp. 19–28, ACM Press, 2006.

[6] A.-R. Sadeghi and C. Stble, “Property-based attestation for comput-
ing platforms: caring about properties, not mechanisms,” New secu-
rity paradigms, 2004.

[7] J. M. McCune, A. Perrig, A. Seshadri, and L. van Doorn, “Turtles
all the way down: Research challenges in user-based attestation,” in
Proceedings of the Workshop on Hot Topics in Security (HotSec),
Aug. 2007.

[8] RSBAC–Rule Set Based Access Control . http://www.rsbac.org/.

[9] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and
J. Lepreau, “The Flask Security Architecture: System support for
diverse security policies,” in Proceedings of the eighth USENIX Se-
curity Symposium (Security ’99), August 23–26, 1999, Washington,
DC, USA (USENIX, ed.), (pub-USENIX:adr), USENIX, 1999.

[10] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux Security Modules: General security support for the Linux
kernel,” in Proceedings of the 11th USENIX Security Symposium,
USENIX, Aug. 2002.

[11] S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux as
a Linux security module,” Report #01-043, NAI Labs, Dec. 2001.
Revised May 2002.

[12] L. Xiao-Yong, S. Chang-Xiang, and Z. Xiao-Dong, “An efficient at-
testation for trustworthiness of computing platform,” in Proceedings
of the 2006 International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing (IIH-MSP’06), 2006.

[13] AMD, “AMD64 Virtualization Codenamed “Pacifica” Technology–
Secure Virtual Machine Architecture Reference Manual,” Tech. Rep.
Publication Number 33047, Revision 3.01, AMD, May 2005.

[14] I. Corporation, “LaGrande technology preliminary architecture spec-
ification,” Tech. Rep. Document Number: 315168 002, Intel Corpo-
ration, Sept. 2006.

[15] J. A. Poritz, “Trust[ed| in] computing, signed code and the heat death
of the internet,” in SAC ’06: Proceedings of the 2006 ACM sympo-
sium on Applied computing, (New York, NY, USA), pp. 1855–1859,
ACM Press, 2006.

[16] L. Chen, R. Landfermann, H. Loehr, M. Rohe, A.-R. Sadeghi, and
C. Stüble, “A Protocol for Property-Based Attestation,” in Pro-
ceedings of the 1st ACM Workshop on Scalable Trusted Computing
(STC’06), ACM Press, 2006.

[17] E. Shi, A. Perrig, and L. V. Doorn, “BIND: A Fine-Grained Attesta-
tion Service for Secure Distributed Systems,” in 2005 IEEE Sympo-
sium on Security and Privacy, 2005.

[18] H. Zhang and F. Wang, “A Behavior-Based Remote Trust Attesta-
tion Model,” Wuhan University Journal of Natural Sciences, vol. 11,
2006.

[19] P. Loscocco and S. Smalley, “Integrating flexible support for security
policies into the Linux operating system,” tech. rep., U.S. National
Security Agency (NSA), Feb. 2001.

[20] S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux as
a Linux security module,” Report #01-043, NAI Labs, Dec. 2001.
Revised May 2002.

[21] J. A. Goguen and J. Meseguer, “Security policies and security mod-
els,” in Proc. IEEE Symposium on Security and Privacy, pp. 11–20,
1982.

[22] ’OASIS’ eXtensible Access Control Markup Language (XACML) .
http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=xacml.

[23] OMG, “Meta object facility (mof) 2.0 query/view/transformation
specification.” http://www.omg.org/docs/ptc/07-07-07.pdf, 2007.

[24] B. Agreiter, “Model-driven configuration of os-level mandatory ac-
cess control: research abstract,” in ICSE Companion ’08: Compan-
ion of the 30th international conference on Software engineering,
(New York, NY, USA), pp. 995–998, ACM, 2008.

[25] “AMD platform for trustworthy computing,” in Microsoft Win-
HEC 2003, pp. 78–89, http://www.microsoft.com/whdc/
winhec/papers03.mspx.

2353

